µXRF Elemental Mapping of Bioresorbable Magnesium-Based Implants in Bone
Abstract
:1. Introduction
2. Results
2.1. Laboratory µXRF Analysis
2.2. Elemental Mapping
3. Discussion
4. Materials and Methods
4.1. Implant Material
4.2. Bone Samples
4.3. X-ray Fluorescence Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chen, Y.; Xu, Z.; Smith, C.; Sankar, J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014, 10, 4561–4573. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.F.; Gu, X.N.; Witte, F. Biodegradable metals. Mater. Sci. Eng. R Rep. 2014, 77, 1–34. [Google Scholar] [CrossRef]
- Kraus, T.; Moszner, F.; Fischerauer, S.; Fiedler, M.; Martinelli, E.; Eichler, J.; Witte, F.; Willbold, E.; Schinhammer, M.; Meischel, M.; et al. Biodegradable Fe-based alloys for use in osteosynthesis: Outcome of an in vivo study after 52 weeks. Acta Biomater. 2014, 10, 3346–3353. [Google Scholar] [CrossRef] [PubMed]
- Staiger, M.P.; Pietak, A.M.; Huadmai, J.; Dias, G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 2006, 27, 1728–1734. [Google Scholar] [CrossRef] [PubMed]
- Kraus, T.; Fischerauer, S.F.; Hänzi, A.C.; Uggowitzer, P.J.; Löffler, J.F.; Weinberg, A.M. Magnesium alloys for temporary implants in osteosynthesis: In vivo studies of their degradation and interaction with bone. Acta Biomater. 2012, 8, 1230–1238. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, R. Magnesium metabolism and its disorders. Clin. Biochem. Rev. 2003, 24, 47–66. [Google Scholar] [PubMed]
- Ayuk, J.; Gittoes, N.J.L. Contemporary view of the clinical relevance of magnesium homeostasis. Ann. Clin. Biochem. 2014, 51, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Janning, C.; Willbold, E.; Vogt, C.; Nellesen, J.; Meyer-Lindenberg, A.; Windhagen, H.; Thorey, F.; Witte, F. Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling. Acta Biomater. 2010, 6, 1861–1868. [Google Scholar] [CrossRef] [PubMed]
- Morawska-Chochol, A.; Domalik-Pyzik, P.; Szaraniec, B.; Chlopek, J. The effect of magnesium alloy wires and tricalcium phosphate particles on apatite mineralization on polylactide-based composites. Mater. Lett. 2016, 180, 1–5. [Google Scholar] [CrossRef]
- Johnson, I.; Liu, H. A Study on Factors Affecting the Degradation of Magnesium and a Magnesium-Yttrium Alloy for Biomedical Applications. PLoS ONE 2013, 8, e65603. [Google Scholar] [CrossRef] [PubMed]
- Pichler, K.; Kraus, T.; Martinelli, E.; Sadoghi, P.; Musumeci, G.; Uggowitzer, P.J.; Weinberg, A.M. Cellular reactions to biodegradable magnesium alloys on human growth plate chondrocytes and osteoblasts. Int. Orthop. 2014, 38, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Jakubek, L.M.; Marangoudakis, S.; Raingo, J.; Liu, X.; Lipscombe, D.; Hurt, R.H. The inhibition of neuronal calcium ion channels by trace levels of yttrium released from carbon nanotubes. Biomaterials 2009, 30, 6351–6357. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Kanemaru, K.; Imai, S.; Miyoshi, N.; Kawanai, T.; Oyama, Y. Yttrium decreases the intracellular Zn2+ concentration in rat thymocytes by attenuating a temperature-sensitive Zn2+ influx. Environ. Toxicol. Pharmacol. 2012, 34, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Feyerabend, F.; Fischer, J.; Holtz, J.; Witte, F.; Willumeit, R.; Drücker, H.; Vogt, C.; Hort, N. Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. Acta Biomater. 2010, 6, 1834–1842. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, V.; Bodapati, S.; Murray, E.; Rice, K.M.; Winston, N.; Shokuhfar, T.; Zhao, Y.; Blough, E. Cytotoxicity and genotoxicity caused by yttrium oxide nanoparticles in HEK293 cells. Int. J. Nanomed. 2014, 9, 1379–1391. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Li, Y.; Ma, Y.; Liu, Z.; Cao, L.; Wang, D.; Liu, S.; Xu, W.; Wang, W. Size-dependent cytotoxicity of yttrium oxide nanoparticles on primary osteoblasts in vitro. J. Nanoparticle Res. 2016, 18, 1–14. [Google Scholar] [CrossRef]
- Roschger, A.; Hofstaetter, J.G.; Pemmer, B.; Zoeger, N.; Wobrauschek, P.; Falkenberg, G.; Simon, R.; Berzlanovich, A.; Thaler, H.W.; Roschger, P.; et al. Differential accumulation of lead and zinc in double-tidemarks of articular cartilage. Osteoarthr. Cartil. 2013, 21, 1707–1715. [Google Scholar] [CrossRef] [PubMed]
- Pemmer, B.; Roschger, A.; Wastl, A.; Hofstaetter, J.G.; Wobrauschek, P.; Simon, R.; Thaler, H.W.; Roschger, P.; Klaushofer, K.; Streli, C. Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue. Bone 2013, 57, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Zoeger, N.; Streli, C.; Wobrauschek, P.; Jokubonis, C.; Pepponi, G.; Roschger, P.; Hofstaetter, J.; Berzlanovich, A.; Wegrzynek, D.; Chinea-Cano, E.; et al. Determination of the elemental distribution in human joint bones by SR micro XRF. X-ray Spectrom. 2008, 37, 3–11. [Google Scholar] [CrossRef]
- Smolek, S.; Pemmer, B.; Fölser, M.; Streli, C.; Wobrauschek, P. Confocal micro-X-ray fluorescence spectrometer for light element analysis. Rev. Sci. Instrum. 2012, 83, 83703. [Google Scholar] [CrossRef] [PubMed]
- Smolek, S.; Nakazawa, T.; Tabe, A.; Nakano, K.; Tsuji, K.; Streli, C.; Wobrauschek, P. Comparison of two confocal micro-XRF spectrometers with different design aspects. X-ray Spectrom. 2014, 43, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Bilo, F.; Borgese, L.; Prost, J.; Rauwolf, M.; Turyanskaya, A.; Wobrauschek, P.; Kregsamer, P.; Streli, C.; Pazzaglia, U.; Depero, L.E. Atomic layer deposition to prevent metal transfer from implants: An X-Ray Fluorescence study. Appl. Surf. Sci. 2015, 359, 215–220. [Google Scholar] [CrossRef]
- Grünewald, T.A.; Rennhofer, H.; Hesse, B.; Burghammer, M.; Stanzl-Tschegg, S.E.; Cotte, M.; Löffler, J.F.; Weinberg, A.M.; Lichtenegger, H.C. Magnesium from bioresorbable implants: Distribution and impact on the nano- and mineral structure of bone. Biomaterials 2016, 76, 250–260. [Google Scholar] [CrossRef] [PubMed]
- Ramsden, E.N. A Review of Experimental Work on Radio-yttrium Comprising 1. The Tissue Distribution, 2. The Mechanism of Deposition in Bone, and 3. The State in the Blood. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1961, 3, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Daigneault, E.A. The distribution of intravenously administered yttrium chloride (carrier free) in the rhesus monkey. Toxicol. Appl. Pharmacol. 1963, 5, 331–343. [Google Scholar] [CrossRef]
- Appelgren, L.-E.; Nelson, A.; Ullberg, S. Distribution of Yttrium 91 in Mice Studied by Whole Body Autoradiography. Acta Radiol. Ther. Phys. Biol. 1966, 4, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Herring, G.M.; Vaughan, J.; Williamson, M. Preliminary report on the site of localization and possible binding agent for yttrium, americium and plutonium in cortical bone. Health Phys. 1962, 8, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.A.; Peacocke, A.R. The binding of calcium and yttrium ions to a glycoprotein from bovine cortical bone. Biochem. J. 1967, 105, 1177–1185. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Chakraborty, S.; Mukhopadhyay, S.; Lee, E.; Paoliello, M.M.B.; Bowman, A.B.; Aschner, M. Manganese homeostasis in the nervous system. J. Neurochem. 2015, 134, 601–610. [Google Scholar] [CrossRef] [PubMed]
- O’Neal, S.L.; Zheng, W. Manganese Toxicity Upon Overexposure: A Decade in Review. Curr. Environ. Heal. Rep. 2015, 2, 315–328. [Google Scholar] [CrossRef] [PubMed]
- Hänzi, A.C.; Gerber, I.; Schinhammer, M.; Löffler, J.F.; Uggowitzer, P.J. On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys. Acta Biomater. 2010, 6, 1824–1833. [Google Scholar] [CrossRef] [PubMed]
- Celarek, A.; Kraus, T.; Tschegg, E.K.; Fischerauer, S.F.; Stanzl-Tschegg, S.; Uggowitzer, P.J.; Weinberg, A.M. PHB, crystalline and amorphous magnesium alloys: Promising candidates for bioresorbable osteosynthesis implants? Mater. Sci. Eng. C 2012, 32, 1503–1510. [Google Scholar] [CrossRef] [PubMed]
- Castellani, C.; Lindtner, R.A.; Hausbrandt, P.; Tschegg, E.; Stanzl-Tschegg, S.E.; Zanoni, G.; Beck, S.; Weinberg, A.M. Bone-implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control. Acta Biomater. 2011, 7, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Wobrauschek, P.; Frank, B.; Zöger, N.; Streli, S.; Cernohlawek, N.; Jokubonis, C.; Hoefler, H. Micro XRF of light elements using a polycapillary lens and an ultra thin window silicon drift detector inside a vacuum chamber. Adv. X-ray Anal. 2005, 48, 229–235. [Google Scholar]
- Smolek, S.; Streli, C.; Zoeger, N.; Wobrauschek, P. Improved micro X-ray fluorescence spectrometer for light element analysis. Rev. Sci. Instrum. 2010, 81, 53707. [Google Scholar] [CrossRef] [PubMed]
- IAEA. Quantitative X ray Analysis System—User’s Manual and Guide to X-ray Fluorescence Technique; IAEA Laboratories Seibersdorf: Seibersdorf, Austria, 2007. [Google Scholar]
Duration of Stay in Bone | Distance from Interface |
---|---|
1 month | 950 µm |
3 months | 1400 µm |
12 months | 1700 µm |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turyanskaya, A.; Rauwolf, M.; Grünewald, T.A.; Meischel, M.; Stanzl-Tschegg, S.; Löffler, J.F.; Wobrauschek, P.; Weinberg, A.M.; Lichtenegger, H.C.; Streli, C. µXRF Elemental Mapping of Bioresorbable Magnesium-Based Implants in Bone. Materials 2016, 9, 811. https://doi.org/10.3390/ma9100811
Turyanskaya A, Rauwolf M, Grünewald TA, Meischel M, Stanzl-Tschegg S, Löffler JF, Wobrauschek P, Weinberg AM, Lichtenegger HC, Streli C. µXRF Elemental Mapping of Bioresorbable Magnesium-Based Implants in Bone. Materials. 2016; 9(10):811. https://doi.org/10.3390/ma9100811
Chicago/Turabian StyleTuryanskaya, Anna, Mirjam Rauwolf, Tilman A. Grünewald, Martin Meischel, Stefanie Stanzl-Tschegg, Jörg F. Löffler, Peter Wobrauschek, Annelie M. Weinberg, Helga C. Lichtenegger, and Christina Streli. 2016. "µXRF Elemental Mapping of Bioresorbable Magnesium-Based Implants in Bone" Materials 9, no. 10: 811. https://doi.org/10.3390/ma9100811