Cytocompatibility of Siloxane-Containing Vaterite/Poly(l-lactic acid) Composite Coatings on Metallic Magnesium
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphologies of the Coating Films
| Sample Code | Thickness (µm) | Roughness, Ra (µm) |
|---|---|---|
| PLLA | 1.8 ± 0.2 | 0.08 ± 0.01 |
| PLLA/V | 3.0 ± 0.1 | 0.19 ± 0.01 |
| PLLA/SiV | 5.3 ± 0.4 | 0.40 ± 0.00 |

2.2. Tensile Bonding Strength

2.3. Degradation of Mg Substrates and the Coating Films

) uncoated, (
) PLLA-coating, (
) PLLA/V-coating and (
) PLLA/SiV-coating. (n = 3).
) uncoated, (
) PLLA-coating, (
) PLLA/V-coating and (
) PLLA/SiV-coating. (n = 3).
2.4. Cell Proliferation and Morphology


2.5. ALP Activity of the Cells

3. Experimental Section
3.1. Sample Preparation
3.2. Tensile Bonding Strength Test

3.3. Soaking Test in a Culture Medium
3.4. Cell Culture Test
3.5. Statistical Analysis
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Witte, F. The history of biodegradable magnesium implants: A review. Acta Biomater. 2010, 6, 1680–1692. [Google Scholar] [PubMed]
- Witte, F.; Hort, N.; Vogt, C.; Cohen, S.; Kainer, K.U.; Willumeit, R.; Feyerabend, F. Degradable biomaterials based on magnesium corrosion. Curr. Opin. Solid State Mater. Sci. 2008, 12, 63–72. [Google Scholar] [CrossRef]
- Staiger, M.P.; Pietak, A.M.; Huadmai, J.; Dias, G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 2006, 27, 1728–1734. [Google Scholar] [CrossRef]
- Rho, J.Y.; Spearing, L.K.; Zioupos, P. Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 1998, 20, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Witte, F.; Kaese, V.; Haferkamp, H.; Switzer, E.; Meyer-Lindenberg, A.; Wirth, C.J.; Windhagen, H. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 2005, 26, 3557–3563. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Liu, W.; Wen, C.; Pan, H.; Wang, T.; Darvell, B.W.; Lu, W.W.; Huang, W. Bone regeneration: Importance of local pH-strontium-doped borosilicate scaffold. J. Mater. Chem. 2012, 22, 8662–8670. [Google Scholar] [CrossRef]
- Wong, H.M.; Yeung, K.W.K.; Lam, K.O.; Tam, V.; Chu, P.K.; Luk, K.D.K.; Cheung, K.M.C. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials 2010, 31, 2084–2096. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Yamamoto, A. Characteristics and cytocompatibility of biodegradable polymer film on magnesium by spin coating. Colloids Surf. B Biointerfaces 2012, 93, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Atrens, A. Understanding magnesium corrosion; A framework for improved alloy performance. Adv. Eng. Mater. 2003, 5, 837–858. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Y.; Hillmyer, M.A.; Francis, L.F. Processing and properties of porous poly(l-lactide)/bioactive glass composites. Biomaterials 2004, 25, 2489–2500. [Google Scholar] [CrossRef] [PubMed]
- Rezwan, K.; Chen, Q.Z.; Blaker, J.J.; Boccaccini, A.R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006, 27, 3412–3431. [Google Scholar] [CrossRef]
- Asselin, A.; Hattar, S.; Oboeuf, M.; Greenspan, D.; Berdal, A.; Sautier, J.M. The modulation of tissue-specific gene expression in rat nasal chondrocyte cultures by bioactive glasses. Biomaterials 2004, 25, 5621–5630. [Google Scholar] [CrossRef] [PubMed]
- Maeno, S.; Niki, Y.; Matsumoto, H.; Morioka, H.; Yatabe, T.; Funayama, A.; Toyama, Y.; Taguchi, T.; Tanaka, J. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 2005, 26, 4847–4588. [Google Scholar] [CrossRef] [PubMed]
- Maeda, H.; Kasuga, T.; Nogami, M.; Hibino, Y.; Hata, K.; Ueda, M.; Ota, Y. Biomimetic apatite formation on poly(lactic acid) composites containing calcium carbonates. J. Mater. Res. 2002, 17, 727–730. [Google Scholar] [CrossRef]
- Kasuga, T.; Maeda, H.; Kato, K.; Nogami, M.; Hata, K.-I.; Ueda, M. Preparation of poly(lactic acid) composites containing calcium carbonate (vaterite). Biomaterials 2003, 24, 3247–3253. [Google Scholar] [CrossRef] [PubMed]
- Kasuga, T.; Obata, A.; Maeda, H.; Hench, L.L. Preparation of poly(lactic acid) composites containing vaterite for bone repair. Mater. Sci. Forum 2007, 539–543, 617–622. [Google Scholar] [CrossRef]
- Maeda, H.; Kasuga, T.; Hench, L.L. Preparation of poly(l-lactic acid)-polysiloxane calcium carbonate hybrid membranes for guided bone regeneration. Biomaterials 2006, 27, 1216–1222. [Google Scholar] [PubMed]
- Tokuda, S.; Obata, A.; Kasuga, T. Preparation of poly(lactic acid)/siloxane/calcium carbonate composite membranes with antibacterial activity. Acta Biomater. 2009, 5, 1163–1168. [Google Scholar] [CrossRef] [PubMed]
- Obata, A.; Kasuga, T. Cellular compatibility of bone-like apatite containing silicon species. J. Biomed. Mater. Res. 2008, 85, 140–144. [Google Scholar] [CrossRef]
- Xyons, I.D.; Edgar, A.J.; Buttert, L.D.K.; Hench, L.L.; Polak, J.M. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. J. Biomed. Mater. Res. 2000, 276, 461–465. [Google Scholar]
- Schubert, D.W.; Dunkel, T. Spin coating from a molecular point of view: Its concentration regimes, influence of molar mass and distribution. Mater. Res. Innovat. 2003, 7, 314–321. [Google Scholar] [CrossRef]
- Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions; National Association of Corrosion Engineers: Houston, TX, USA, 1974; p. 275. [Google Scholar]
- Park, A.; Cima, L.G. In vitro cell response to differences in poly-l-lactide crystallinity. J. Biomed. Mater. Res. 1996, 31, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Isfisco, M.; Palazzo, B.; Ito, T.; Otsuka, M.; Senna, M.; Delgado-Lopez, J.M.; Gomez-Morales, J.; Tampireri, A.; Part, M.; Rimondini, L. Preparation of core–shell poly(l-lactic) acid-nanocrystalline apatite hollow microspheres for bone repairing applications. J. Mater. Sci. Mater. Med. 2012, 23, 2659–2669. [Google Scholar] [CrossRef]
- Diva, M.; Tapia, F.; Boccaccini, A.R. Magnesium-containing bioactive glasses for biomedical applications. J. Appl. Glass Sci. 2012, 3, 221–253. [Google Scholar] [CrossRef]
- Greiner, C.; Campo, A.; Arzt, E. Adhesion of bioinspired micropatterned surface: Effects of pillar radius, aspect ratio, and preload. Langmuir 2007, 23, 3495–3502. [Google Scholar] [CrossRef] [PubMed]
- Webb, K.; Hlady, V.; Tresco, P.A. Relationship among cell attachment, spreading, cytoskeletal organization, and migration rate for anchorage-dependent cells on model surfaces. J. Biomed. Mater. Res. 2000, 49, 362–368. [Google Scholar] [PubMed]
- Lavenus, S.; Berreur, M.; Trichet, V.; Pilet, P.; Louarn, G.; Layrolle, P. Adhesion and osteogenic differentiation of human mesenchymal tem cells on titanium nanopores. Eur. Cell. Mater. 2011, 22, 84–96. [Google Scholar] [PubMed]
- Xynos, I.D.; Edger, A.J.; Buttery, L.D.K.; Hench, L.L.; Polak, J.M. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass®. J. Biomed. Mater. Res. 2001, 55, 151–157. [Google Scholar] [PubMed]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Yamada, S.; Maeda, H.; Obata, A.; Lohbauer, U.; Yamamoto, A.; Kasuga, T. Cytocompatibility of Siloxane-Containing Vaterite/Poly(l-lactic acid) Composite Coatings on Metallic Magnesium. Materials 2013, 6, 5857-5869. https://doi.org/10.3390/ma6125857
Yamada S, Maeda H, Obata A, Lohbauer U, Yamamoto A, Kasuga T. Cytocompatibility of Siloxane-Containing Vaterite/Poly(l-lactic acid) Composite Coatings on Metallic Magnesium. Materials. 2013; 6(12):5857-5869. https://doi.org/10.3390/ma6125857
Chicago/Turabian StyleYamada, Shinya, Hirotaka Maeda, Akiko Obata, Ulrich Lohbauer, Akiko Yamamoto, and Toshihiro Kasuga. 2013. "Cytocompatibility of Siloxane-Containing Vaterite/Poly(l-lactic acid) Composite Coatings on Metallic Magnesium" Materials 6, no. 12: 5857-5869. https://doi.org/10.3390/ma6125857
APA StyleYamada, S., Maeda, H., Obata, A., Lohbauer, U., Yamamoto, A., & Kasuga, T. (2013). Cytocompatibility of Siloxane-Containing Vaterite/Poly(l-lactic acid) Composite Coatings on Metallic Magnesium. Materials, 6(12), 5857-5869. https://doi.org/10.3390/ma6125857
