A Mechanism of DC-AC Conversion in the Organic Thyristor
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Summary
Acknowledgments
References
- Inagaki, K.; Terasaki, I.; Mori, H.; Mori, T. Large dielectric constant and giant nonlinear conduction in the organic conductor θ-(BEDT-TTF)2CsZn(SCN)4. J. Phys. Soc. Jpn. 2004, 73, 3364–3369. [Google Scholar]
- Sawano, F.; Terasaki, I.; Mori, H.; Mori, T.; Watanabe, M.; Ikeda, N.; Nogami, Y.; Noda, Y. An organic thyristor. Nature 2005, 437, 522–524. [Google Scholar] [CrossRef] [PubMed]
- Takahide, Y.; Konoike, T.; Enomoto, K.; Nishimura, M.; Terashima, T.; Uji, S.; Yamamoto, H.M. Current-voltage characteristics of charge-ordered organic crystals. Phys. Rev. Lett. 2006, 96, 136602. [Google Scholar] [CrossRef] [PubMed]
- Kondo, R.; Higa, M.; Kagoshima, S. A possible internal deformation of the charge ordering and its meta-stability in the organic conductor θ-(BEDT-TTF)2CsZn(SCN)4. J. Phys. Soc. Jpn. 2007, 76, 033703. [Google Scholar] [CrossRef]
- Endo, H.; Kawamoto, T.; Mori, T.; Terasaki, I.; Kakiuchi, T.; Sawa, H.; Kodani, M.; Takimiya, K.; Otsubo, T. Current-induced metallic state in an organic (EDT-TSF)2GaCl4 conductor. J. Am. Chem. Soc. 2006, 128, 9006–9007. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, K.; Tanaka, T.; Fujita, W.; Awaga, K.; Inabe, T. Low-field negative-resistance effect in a charge-ordered state of thiazyl-radical crystals. Angew. Chem. Int. Ed. 2006, 45, 4516–4518. [Google Scholar] [CrossRef] [PubMed]
- Niizeki, S.; Yoshikane, F.; Kohno, K.; Takahashi, K.; Mori, H.; Bando, Y.; Kawamoto, T.; Mori, T. Dielectric response and electric-field-induced metastable state in an organic conductor β-(meso-DMBEDT-TTF)2PF6. J. Phys. Soc. Jpn. 2008, 77, 073710. [Google Scholar] [CrossRef]
- Potember, R.S.; Poehler, T.O.; Cowan, D.O. Electrical switching and memory phenomena in Cu-TCNQ thin films. Appl. Phys. Lett. 1979, 34, 405–407. [Google Scholar] [CrossRef]
- Iwasa, Y.; Koda, T.; Koshihara, S.; Tokura, Y.; Iwasawa, N.; Saito, G. Intrinsic negative-resistance effect in mixed-stack charge-transfer crystals. Phys. Rev. B 1989, 39, 10441–10444. [Google Scholar] [CrossRef]
- Kumai, R.; Okimoto, Y.; Tokura, Y. Current-induced insulator-metal transition and pattern formation in an organic charge-transfer complex. Science 1999, 284, 1645–1647. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, W.; Reed, M.A.; Rawlett, A.M.; Price, D.W.; Tour, J.M. Room-temperature negative differential resistance in nanoscale molecular junctions. Appl. Phys. Lett. 2000, 77, 1224–1226. [Google Scholar] [CrossRef]
- Toyota, N.; Abe, Y.; Matsui, H.; Negishi, E.; Ishizaki, Y.; Tsuchiya, H.; Uozaki, H.; Endo, S. Nonlinear electrical transport in λ-(BEDT-TSF)2FeCl4. Phys. Rev. B 2002, 66, 033201. [Google Scholar] [CrossRef]
- Matsushita, M.M.; Sugawara, T. Current-induced low-resistance state and its crystal structure of a TTF-based dimeric donor salt. J. Am. Chem. Soc 2005, 127, 12450–12451. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.W.; Kim, B.J.; Lim, J.W.; Yun, S.J.; Choi, S.; Chae, B.G.; Kim, G.; Kim, H.T. Metal-insulator transition-induced electrical oscillation in vanadium dioxide thin film. Appl. Phys. Lett. 2008, 92, 162903. [Google Scholar] [CrossRef]
- Mori, T.; Bando, Y.; Kawamoto, T.; Terasaki, I.; Takimiya, K.; Otsubo, T. Giant nonlinear conductivity and spontaneous current oscillation in an incommensurate organic superconductor. Phys. Rev. Lett. 2008, 100, 037001. [Google Scholar] [CrossRef] [PubMed]
- Mori, H.; Tanaka, S.; Mori, T. Systematic study of the electronic state in θ-type BEDT-TTF organic conductors by changing the electronic correlation. Phys. Rev. B 1998, 57, 12023–12029. [Google Scholar] [CrossRef]
- Seo, H. Charge ordering in organic ET compounds. J. Phys. Soc. Jpn. 2000, 69, 805–820. [Google Scholar] [CrossRef]
- Takahashi, T.; Nogami, Y.; Yakushi, K. Charge ordering in organic conductors. J. Phys. Soc. Jpn. 2006, 75, 051008. [Google Scholar] [CrossRef]
- Miyagawa, K.; Kawamoto, A.; Kanoda, K. Charge ordering in a quasi-two-dimensional organic conductor. Phys. Rev. B 2000, 62, R7679–R7682. [Google Scholar] [CrossRef]
- Watanabe, M.; Noda, Y.; Nogami, Y.; Mori, H. Crystal structure of charge ordered compound θ-(BEDT-TTF)2RbCo(SCN)4 at low temperatures. J. Phys. Soc. Jpn. 2005, 74, 2011–2016. [Google Scholar] [CrossRef]
- Dressel, M.; Drichko, N. Optical properties of two-dimensional organic conductors: Signatures of charge ordering and correlation effects. Chem. Rev. 2004, 104, 5689–5716. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Yamamoto, K.; Yakushi, K.; Kawamoto, A. Infrared and Raman studies of θ-(BEDT-TTF)2CsZn(SCN)4: Comparison with the frozen state of θ-(BEDT-TTF)2RbZn(SCN)4. J. Phys. Soc. Jpn. 2005, 74, 2631–2639. [Google Scholar] [CrossRef]
- Watanabe, M.; Nogami, Y.; Oshima, K.; Mori, H.; Tanaka, S. Novel pressure-induced 2kF CDW state in organic Low-dimensional compound θ-(BEDT-TTF)2CsCo(SCN)4. J. Phys. Soc. Jpn. 1999, 68, 2654–2663. [Google Scholar] [CrossRef]
- Burgy, J.; Mayr, M.; Martin-Mayor, V.; Moreo, A.; Dagotto, E. Colossal effects in transition metal oxides caused by intrinsic inhomogeneities. Phys. Rev. Lett. 2001, 87, 277202. [Google Scholar] [CrossRef] [PubMed]
- Kuroki, K. The origin of the charge ordering and its relevance to superconductivity in θ-(BEDT-TTF)2X: The effect of the Fermi surface nesting and the distant electron–electron interactions. J. Phys. Soc. Jpn. 2006, 75, 114716. [Google Scholar] [CrossRef]
- Watanabe, H.; Ogata, M. Novel charge order and superconductivity in two-dimensional frustrated lattice at quarter filling. J. Phys. Soc. Jpn. 2006, 75, 063702. [Google Scholar] [CrossRef]
- Udagawa, M.; Motome, Y. Charge ordering and coexistence of charge fluctuations in quasi-two-dimensional organic conductors θ-(BEDT-TTF)2X. Phys. Rev. Lett. 2007, 98, 206405. [Google Scholar] [CrossRef] [PubMed]
- Hotta, C.; Furukawa, N. Filling dependence of a new type of charge ordered liquid on a triangular lattice system. J. Phys.: Condens. Matter 2007, 19, 145242. [Google Scholar] [CrossRef]
- Fleming, R.M.; Grimes, C.C. Sliding-mode conductivity in NbSe3: Observation of a threshold electric field and conduction noise. Phys. Rev. Lett. 1979, 42, 1423–1426. [Google Scholar] [CrossRef]
- Monceau, P.; Richard, J.; Renard, M. Interference effects of the charge-density-wave motion in NbSe3. Phys. Rev. Lett. 1980, 45, 43–46. [Google Scholar] [CrossRef]
- Brown, S.E.; Gruner, G. Shapiro steps in orthorhombic TaS3. Phys. Rev. B 1985, 31, 8302–8304. [Google Scholar] [CrossRef]
- Maeda, A.; Notomi, M.; Uchinokura, K. Switching of K0.3MoO3 at low temperatures. I. Response to the dc electric field. Phys. Rev. B 1990, 42, 3290–3301. [Google Scholar] [CrossRef]
- Nishio, Y.; Nihei, Y.; Tamura, M.; Kajita, K.; Nakamura, T.; Takahashi, T. Specific heat and metal-insulator transition of (BEDT-TTF)2MZn(SCN)4 (M=Cs, Rb). Synth. Met. 1999, 103, 1907–1908. [Google Scholar] [CrossRef]
- Gru¨ner, G. The dynamics of charge-density waves. Rev. Mod. Phys. 1988, 60, 1129–1181. [Google Scholar] [CrossRef]
- Sawano, F.; Suko, T.; Inada, T.S.; Tasaki, S.; Terasaki, I.; Mori, H.; Mori, T.; Nogami, Y.; Ikeda, N.; Watanabe, M.; Noda, Y. Current-density dependence of the charge-ordering gap in the organic salt θ-(BEDT-TTF)2CsM(SCN)4 (M =Zn, Co, and Co0.7Zn0.3). J. Phys. Soc. Jpn. 2009, 78, 024714. [Google Scholar] [CrossRef]
- Song, H.; Tokunaga, M.; Imamori, S.; Tokunaga, Y.; Tamegai, T. Nonvolatile multivalued memory effects in electronic phase-change manganites controlled by Joule heating. Phys. Rev. B 2006, 74, 052404. [Google Scholar] [CrossRef]
- Kim, H.T.; Kim, B.J.; Choi, S.; Chae, B.G.; Lee, Y.W.; Driscoll, T.; Qazilbash, M.M.; Basov, D.N. Electrical oscillations induced by the metal-insulator transition in VO2. J. Appl. Phys. 2010, 107, 023702. [Google Scholar] [CrossRef]
- Kishida, H.; Ito, T.; Nakamura, A.; Takaishi, S.; Yamashita, M. Current oscillation originating from negative differential resistance in one-dimensional halogen-bridged nickel compounds. J. Appl. Phys. 2009, 106, 016106. [Google Scholar] [CrossRef]
- Ajisaka, S.; Nishimura, H.; Tasaki, S.; Terasaki, I. Nonequilibrium Peierls transition. Prog. Theor. Phys. 2009, 121, 1289–1319. [Google Scholar] [CrossRef]
- Terasaki, I.; Tasaki, S.; Ajisaka, S.; Nogami, Y.; Hanasaki, N.; Watanabe, M.; Mori, H.; Mori, T. Nonequilibrium charge ordering in θ-(BEDT-TTF)2MM’(SCN)4 (M=Rb, Cs; M’=Co, Zn). Physica B 2009, in press. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Suko, T.; Terasaki, I.; Mori, H.; Mori, T. A Mechanism of DC-AC Conversion in the Organic Thyristor. Materials 2010, 3, 2027-2036. https://doi.org/10.3390/ma3032027
Suko T, Terasaki I, Mori H, Mori T. A Mechanism of DC-AC Conversion in the Organic Thyristor. Materials. 2010; 3(3):2027-2036. https://doi.org/10.3390/ma3032027
Chicago/Turabian StyleSuko, Tomohiro, Ichiro Terasaki, Hatsumi Mori, and Takehiko Mori. 2010. "A Mechanism of DC-AC Conversion in the Organic Thyristor" Materials 3, no. 3: 2027-2036. https://doi.org/10.3390/ma3032027
APA StyleSuko, T., Terasaki, I., Mori, H., & Mori, T. (2010). A Mechanism of DC-AC Conversion in the Organic Thyristor. Materials, 3(3), 2027-2036. https://doi.org/10.3390/ma3032027