Flash Graphene-Modified Portland Cement Paste with Both High Electromagnetic and Mechanical Performances at a Low Percolation Threshold
Abstract
1. Introduction
2. Experimental Section
2.1. Materials and Sample Preparation
2.2. Characterisations
2.2.1. Basic Characterisation
2.2.2. Cement Hydration Heat
2.2.3. Thermal Decomposition of FGP-Modified Paste
2.2.4. Thermal Conductivity of FGP-Modified Paste
2.2.5. Electrical Resistivity of FGP-Modified Paste During Curing
2.2.6. Flexural and Compressive Strength of FGP-Modified Paste
2.2.7. EMWs Reflection Loss (RL) of FGP-Modified Paste
3. Results
3.1. Effects of Flash Graphene on Cement Hydration
3.1.1. Hydration Kinetic
3.1.2. Hydration Products
3.2. Porosity and Strength
3.3. Thermal and Electrical Conductivities
3.4. EMWs Reflection Loss
4. Discussion
4.1. Electrical Percolation Threshold and Strength Enhancement Thresholds
| Conductive Materials | Type | Binder | W/B | Percolation Threshold (wt.% to Binder) | Threshold of Compressive Strength Enhancement (wt.% to Cement) | Ref |
|---|---|---|---|---|---|---|
| GNP | paste | cement + silica fume | 0.4 | 2 to 3 | <1 | [21] |
| GNP | mortar | cement | 0.485 | 10 | not studied | [47] |
| MLG | paste | paste + silica fume | 0.5 | 2.5 | not studied | [48] |
| MLG | mortar | cement + fly ash + silica fume | 0.375 | >0.75 | 0.5 | [49] |
| EG | mortar | cement | 0.4 | 2 | <1 | [50] |
| EG | mortar | cement | 0.5 | 0.8 | <0.4 | [51] |
| FGP | mortar | cement | 0.4 | not studied | 0.04 | [32] |
| FGP | mortar | cement | 0.45 | not studied | not studied | [28] |
| FGP | paste | paste | 0.4 | 0.5 | 0.5 | This work |
4.2. Relationships Among EMWs Absorption Performance, Conductivities, and Other Properties
5. Conclusions
- (1)
- The aspect ratios of Portlandite crystals at 28 days of age and the formation rates at an early age vary with the dosages of FGP powder in cement paste. Due to the special morphology of the FGP, which is composed of the turbostratic graphite layers with rotational misalignment and the crumpled graphene sheets, the cement hydration during the acceleration period is accelerated in the presence of FGP. The aspect ratios of Portlandite crystals first decrease and then increase with the increase in FGP dosages in the hardened cement paste at 28 days of age. The compressive and flexural strength values of the modified cement paste samples at 28 days of age first increase and then decrease with the dosages of FGP. When the FGP-to-cement ratio is approximately 0.50 wt.%, the compressive and flexural strength values of the samples are the highest in the tested groups, with growth rates of 59.5% and 22.4%, respectively.
- (2)
- The percolation threshold of flash graphene powders in cement paste approximates its threshold for the enhancement of compressive strength. The thermal conductivity values of FGP-modified cement paste increase with the dosage of FGP. The dosages of FGP in paste samples directly impact the aspect ratios of Portlandite crystals. When the FGP-to-cement ratio is about 0.50 wt.%, the Portlandite obtains the minimum value, meaning a much smaller size of calcium hydroxide crystals, indicating a weaker hindrance effect on the transfer of electrons in the hardened cement paste. The maximum percolation threshold of FGP in cement paste with a water-to-binder ratio of 0.4 in this work is approximately 0.50 wt.% of the cement mass, which is a significantly smaller threshold value than that of other types of graphene.
- (3)
- Both the electromagnetic loss capacity and the impedance-matching property of FGP-modified Portland cement paste are improved with a proper dosage. The adjustment of the impedance-matching properties of cementitious matrix with Portlandite of smaller crystalline sizes is much stronger than that induced by the variation in air volume (referred to as porosity). The smaller Portlandite crystals not only enhance the conductivity of FGP-modified cement paste, but also enhance its impedance-matching property, resulting in significantly better EMWs absorption in the wave frequency range of 2 to 18 GHz. The effective absorption bandwidth of the paste sample with 0.50 wt.% of FGP is approximately 7.76 GHz, encompassing the entire Ku band frequency range. This work provides a possible solution to the contradictory relationship between the enhancement of electrical and strength properties when using normal graphene as the conductive and electromagnetic wave-absorbing phase in Portland cement paste, where FGP particles replace normal graphene.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vrdoljak, I.; Varevac, D.; Miličević, I.; Čolak, S. Concrete-Based Composites with the Potential for Effective Protection against Electromagnetic Radiation: A Literature Review. Constr. Build. Mater. 2022, 326, 126919. [Google Scholar] [CrossRef]
- Chen, M.; Yao, J.; Zhong, J.; Ruan, W.; Xiao, H.; Sun, Y. Electromagnetic Interference Shielding Performance and Piezoresistivity of Multifunctional Cement Composites by Adopting Conductive Aggregates. Cem. Concr. Compos. 2024, 153, 105697. [Google Scholar] [CrossRef]
- Chung, D.D.L. A Review of Microwave Absorption and Reflection by Cement-Based Materials, with Emphasis on Electromagnetic Interference Shielding and Admixture Effects. Adv. Funct. Mater. 2024, 34, 2408220. [Google Scholar] [CrossRef]
- Dong, W.; Huang, Y.; Lehane, B.; Aslani, F.; Ma, G. Mechanical and Electrical Properties of Concrete Incorporating an Iron-Particle Contained Nano-Graphite by-Product. Constr. Build. Mater. 2021, 270, 121377. [Google Scholar] [CrossRef]
- Khushnood, R.A.; Ahmad, S.; Savi, P.; Tulliani, J.M.; Giorcelli, M.; Ferro, G.A. Improvement in Electromagnetic Interference Shielding Effectiveness of Cement Composites Using Carbonaceous Nano/Micro Inerts. Constr. Build. Mater. 2015, 85, 208–216. [Google Scholar] [CrossRef]
- Micheli, D.; Pastore, R.; Vricella, A.; Morles, R.B.; Marchetti, M.; Delfini, A.; Moglie, F.; Primiani, V.M. Electromagnetic Characterization and Shielding Effectiveness of Concrete Composite Reinforced with Carbon Nanotubes in the Mobile Phones Frequency Band. Mater. Sci. Eng. B 2014, 188, 119–129. [Google Scholar] [CrossRef]
- Cao, J.; Chung, D.D.L. Electric Polarization and Depolarization in Cement-Based Materials, Studied by Apparent Electrical Resistance Measurement. Cem. Concr. Res. 2004, 34, 481–485. [Google Scholar] [CrossRef]
- Quan, B.; Liang, X.; Ji, G.; Cheng, Y.; Liu, W.; Ma, J.; Zhang, Y.; Li, D.; Xu, G. Dielectric Polarization in Electromagnetic Wave Absorption: Review and Perspective. J. Alloys Compd. 2017, 728, 1065–1075. [Google Scholar] [CrossRef]
- Qin, M.; Zhang, L.; Wu, H. Dielectric Loss Mechanism in Electromagnetic Wave Absorbing Materials. Adv. Sci. 2022, 9, 2105553. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Wu, J.; Wang, F.; Zhu, N.; Tang, H.; Zhang, Z. Research on Electromagnetic Wave Absorption Properties of Portland Cement. Mater. Res. Bull. 2024, 178, 112903. [Google Scholar] [CrossRef]
- Lv, X.; Duan, Y.; Chen, G. Electromagnetic Wave Absorption Properties of Cement-Based Composites Filled with Graphene Nano-Platelets and Hollow Glass Microspheres. Constr. Build. Mater. 2018, 162, 280–285. [Google Scholar] [CrossRef]
- Sun, Y.F.; Zhou, T.S.; Gao, P.W.; Chen, M.; Liu, H.W.; Xun, Y. Microstructure and Microwave Absorption Properties of Cement-Based Material Reinforced with Reduced Graphene Oxide and Nanoparticles. Strength Mater. 2019, 51, 601–608. [Google Scholar] [CrossRef]
- Deng, S.; Wang, B.; Ai, H.; Han, J. Electromagnetic Wave Absorption Properties and Mechanism of Graphene/Ni0.4Zn0.6Fe2O4 Cement Composites. J. Mater. Civ. Eng. 2022, 34, 04022142. [Google Scholar] [CrossRef]
- Bai, Y.-H.; Chen, Y.-J.; Lu, Y. Graphite-Enhanced Foam Cement-Based Materials: Mechanical Properties, Pore Structure and Electromagnetic Wave Absorption Performance. Mater. Today Commun. 2024, 40, 109377. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, Q.; Wang, D.; Yu, X.; Han, B. Electromagnetic Properties and Mechanisms of Multiwalled Carbon Nanotubes Modified Cementitious Composites. Constr. Build. Mater. 2019, 208, 427–443. [Google Scholar] [CrossRef]
- Wang, B.; Guo, Z.; Han, Y.; Zhang, T. Electromagnetic Wave Absorbing Properties of Multi-Walled Carbon Nanotube/Cement Composites. Constr. Build. Mater. 2013, 46, 98–103. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, C.; Zhu, Y.; Zou, J.; Chen, Y. Enhanced Electromagnetic Wave Absorption in Ultrathin Cement-Based Composites with Integrated Multi-Dimensional Carbon Materials. Constr. Build. Mater. 2024, 432, 136595. [Google Scholar] [CrossRef]
- Bian, P.; Yu, Q.; Zhan, B.; Gao, P.; Guo, B.; Hong, L.; Yang, Y.; Han, A. Enhancing Electromagnetic Wave Absorption and Flexural Properties in Carbon Fiber-Reinforced Foamed Cement-Based Composites. Constr. Build. Mater. 2024, 415, 134989. [Google Scholar] [CrossRef]
- Yu, Q.; Liu, X.; Wang, Z.; Wei, S.; Gao, H.; Lei, C. Effects of Hybrid Carbon and Steel Fibres on Self-Sensing and Electromagnetic Wave Absorbing Properties of Concrete. Constr. Build. Mater. 2025, 460, 139848. [Google Scholar] [CrossRef]
- Mu, S.; Yue, J.; Wang, Y.; Feng, C. Electrical, Piezoresistive and Electromagnetic Properties of Graphene Reinforced Cement Composites: A Review. Nanomaterials 2021, 11, 3220. [Google Scholar] [CrossRef]
- Dong, W.; Li, W.; Wang, K.; Shah, S.P. Physicochemical and Piezoresistive Properties of Smart Cementitious Composites with Graphene Nanoplates and Graphite Plates. Constr. Build. Mater. 2021, 286, 122943. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, Z.; Ahsan Iqbal, M.; Arif, N.; Li, L.; Li, P.; Zeng, Y.J. Flash Joule Heating Technology in Two-Dimensional Materials and Beyond. FlatChem 2024, 48, 100765. [Google Scholar] [CrossRef]
- Eddy, L.; Xu, S.; Liu, C.; Scotland, P.; Chen, W.; Beckham, J.L.; Damasceno, B.; Choi, C.H.; Silva, K.; Lathem, A.; et al. Electric Field Effects in Flash Joule Heating Synthesis. J. Am. Chem. Soc. 2024, 146, 16010–16019. [Google Scholar] [CrossRef]
- Deng, B.; Eddy, L.; Wyss, K.M.; Tiwary, C.S.; Tour, J.M. Flash Joule Heating for Synthesis, Upcycling and Remediation. Nat. Rev. Clean Technol. 2025, 1, 32–54. [Google Scholar] [CrossRef]
- Luong, D.X.; Bets, K.V.; Algozeeb, W.A.; Stanford, M.G.; Kittrell, C.; Chen, W.; Salvatierra, R.V.; Ren, M.; McHugh, E.A.; Advincula, P.A.; et al. Gram-Scale Bottom-up Flash Graphene Synthesis. Nature 2020, 577, 647–651. [Google Scholar] [CrossRef]
- Wyss, K.M.; Luong, D.X.; Tour, J.M. Large-Scale Syntheses of 2D Materials: Flash Joule Heating and Other Methods. Adv. Mater. 2022, 34, 2106970. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Lin, L.; Pang, M.; Jia, C.; Xia, L.; Shi, G.; Zhang, S.; Lu, Y.; Sun, L.; Yu, F.; et al. Continuous and Low-Carbon Production of Biomass Flash Graphene. Nat. Commun. 2024, 15, 3218. [Google Scholar] [CrossRef]
- Algozeeb, W.A.; Algadhib, A.; Ahmad, S.; Al-Osta, M.A.; Bahraq, A.A.; Chen, W.; Najamuddin, S.K.; Ali, S.I.; Tour, J.M. Soot-Derived Flash Graphene as Cement Additive. ACS Appl. Nano Mater. 2024, 7, 25225–25232. [Google Scholar] [CrossRef]
- Yao, G.; Hong, H.; Zhou, X.; Lin, K.; Liu, H.; You, Y.; Liu, C.; Chen, K.; Li, C.; Yin, J.; et al. Stable Ultrafast Graphene Hot-Electron Source on Optical Fiber. Nat. Commun. 2025, 16, 5726. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Wang, D.; Ding, S.; Wang, X.; Han, B. Effect and Mechanisms of Type, Content, and Dispersion Method of Flash Graphene on the Rheological Behaviors of Fresh Cement Pastes. Constr. Build. Mater. 2024, 448, 138231. [Google Scholar] [CrossRef]
- Surehali, S.; Volaity, S.S.; Simon, A.; Divigalpitiya, R.; Kumar, A.; Neithalath, N. New Generation Graphenes in Cement-Based Materials: Production, Property Enhancement, and Life Cycle Analysis. ACS Sustain. Chem. Eng. 2024, 12, 9193–9206. [Google Scholar] [CrossRef]
- Wang, C.; Wang, B.; Su, X.; He, R. Synthesis of Graphene from Waste Rubber Powder Based on Flash Joule Heating Method and Its Influence on the Performance of Cement Mortar. Constr. Build. Mater. 2024, 451, 138871. [Google Scholar] [CrossRef]
- Wang, D.; Ding, S.; Wang, X.; Qiu, L.; Qin, H.; Ni, Y.Q.; Han, B. Low-Cost Flash Graphene from Carbon Black to Reinforce Cementitious Composites for Carbon Footprint Reduction. Chem. Eng. J. 2024, 500, 156926. [Google Scholar] [CrossRef]
- Yakobson, B.I.; Tour, J.M.; Stanford, M.G.; Bets, K.V.; Luong, D.X.; Advincula, P.A.; Chen, W.; Li, J.T.; Wang, Z.; McHugh, E.A.; et al. Flash Graphene Morphologies. ACS Nano 2020, 14, 13691–13699. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, Q.; Feng, P.; Brouwers, H.J.H. Variation of Self-Cleaning Performance of Nano-TiO2 Modified Mortar Caused by Carbonation: From Hydrates to Carbonates. Cem. Concr. Res. 2022, 158, 106852. [Google Scholar] [CrossRef]
- Shi, W.; Wang, Z.; Li, C.; Sun, Q.; Wang, W.; Deng, S.; Li, W.; Xie, A. High-Temperature Strengthening of Portland Cementitious Materials by Surface Micro-Ceramization. Cem. Concr. Res. 2025, 190, 107790. [Google Scholar] [CrossRef]
- Ma, G.; Sun, J.; Wang, L.; Aslani, F.; Liu, M. Electromagnetic and Microwave Absorbing Properties of Cementitious Composite for 3D Printing Containing Waste Copper Solids. Cem. Concr. Compos. 2018, 94, 215–225. [Google Scholar] [CrossRef]
- Yang, C.; Li, H.; Xiong, D.; Cao, Z. Hollow Polyaniline/Fe3O4 Microsphere Composites: Preparation, Characterization, and Applications in Microwave Absorption. React. Funct. Polym. 2009, 69, 137–144. [Google Scholar] [CrossRef]
- Deng, G.; Yang, Y.; Zhou, Q.; Lei, Y.; Yue, L.; Yang, T. Lightweight and Broadband Electromagnetic Wave Absorbing Foamed Cement-Based Composites Incorporated with Hybrid Dielectric Fibers. Constr. Build. Mater. 2022, 327, 126931. [Google Scholar] [CrossRef]
- Wei, Y.; Shi, Y.; Zhang, X.; Li, D.; Zhang, L.; Gong, C.; Zhang, J. Preparation of Black Titanium Monoxide Nanoparticles and Their Potential in Electromagnetic Wave Absorption. Adv. Powder Technol. 2020, 31, 3458–3464. [Google Scholar] [CrossRef]
- Harutyunyan, V.S.; Kirchheim, A.P.; Monteiro, P.J.M.; Aivazyan, A.P.; Fischer, P. Investigation of Early Growth of Calcium Hydroxide Crystals in Cement Solution by Soft X-Ray Transmission Microscopy. J. Mater. Sci. 2009, 44, 962–969. [Google Scholar] [CrossRef]
- Mehta, P.K.; Monteiro, P.J.M. Concrete Microstructure, Properties, and Materials, 3rd ed.; The McGraw-Hill Companies, Inc.: New York, NY, USA, 2006; ISBN 0071589198. [Google Scholar]
- Jin, P.; Kohestanian, M.; Hasany, M.; Akhiani, A.R.; Su, Y.; Mehrali, M. Multifunctional Cement-Based Composite with Advanced Self-Sensing, Electrothermal, and Electrochemical Properties. Adv. Funct. Mater. 2025, 35, 2411878. [Google Scholar] [CrossRef]
- Wang, Z.; Shao, T.; Zhang, H.; Huo, J.; Liu, J.; Zhang, T.; Ji, X.; Zhang, H.; Wang, J.; Guo, H.; et al. Principles, Properties and Applications of Smart Conductive Cement-Based Composites: A State-of-the-Art Review. Constr. Build. Mater. 2023, 408, 133569. [Google Scholar] [CrossRef]
- Lin, Y.; Du, H. Graphene Reinforced Cement Composites: A Review. Constr. Build. Mater. 2020, 265, 120312. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, M.; Han, X.; Zheng, Y. A Review on Properties of Cement-Based Composites Doped with Graphene. J. Build. Eng. 2023, 70, 106367. [Google Scholar] [CrossRef]
- Le, J.L.; Du, H.; Pang, S.D. Use of 2-D Graphene Nanoplatelets (GNP) in Cement Composites for Structural Health Evaluation. Compos. Part B Eng. 2014, 67, 555–563. [Google Scholar] [CrossRef]
- Chen, H.; Xu, N.; Jiang, P.; Jiang, L. Study on the Effect of Freeze–Thaw Action on the Electrical Conductivity and Sensing Properties of Graphene-Based Cement Composites. Materials 2023, 16, 855. [Google Scholar] [CrossRef]
- Li, L.; Zheng, Q.; Dong, S.; Wang, X.; Han, B. The Reinforcing Effects and Mechanisms of Multi-Layer Graphenes on Mechanical Properties of Reactive Powder Concrete. Constr. Build. Mater. 2020, 251, 118995. [Google Scholar] [CrossRef]
- Frąc, M.; Szołdra, P.; Pichór, W. Smart Graphite–Cement Composites with Low Percolation Threshold. Materials 2022, 15, 2770. [Google Scholar] [CrossRef] [PubMed]
- Safuta, M.; Valentini, C.; Ciesielski, A.; Samorì, P. Tailoring Electrochemically Exfoliated Graphene Electroactive Pathways in Cementitious Composites for Structural Health Monitoring of Constructions. Nanoscale 2024, 16, 15824–15833. [Google Scholar] [CrossRef]
- Krystek, M.; Ciesielski, A.; Samorì, P. Graphene-Based Cementitious Composites: Toward next-Generation Construction Technologies. Adv. Funct. Mater. 2021, 31, 2101887. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X.; Lan, D.; Wang, Y.; Huang, H.; Zhang, C.; Wu, G.; Zhang, S.; Jia, Z. Multifunctional Electromagnetic Wave Absorbing Materials: Research Progress from Component Structural Design to Intelligent Integration. Carbon N. Y. 2025, 245, 120818. [Google Scholar] [CrossRef]
- Zhang, S.; Lan, D.; Zheng, J.; Zhao, Z.; Jia, Z.; Wu, G. Insights into Polarization Relaxation of Electromagnetic Wave Absorption. Cell Reports Phys. Sci. 2024, 5, 102206. [Google Scholar] [CrossRef]


















| Components | CaO | SiO2 | Al2O3 | MgO | Fe2O3 | SO3 | K2O | Na2O | TiO2 | P2O5 | Minor Elements a |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Content | 59.761 | 20.561 | 5.023 | 4.613 | 3.973 | 3.324 | 1.159 | 0.702 | 0.346 | 0.147 | 0.391 |
| FGP/Cement (wt.%) | CH (%) | Non-Evaporable Water (%) | C-S-H (%) | |||
|---|---|---|---|---|---|---|
| 1 d | 28 d | 1 d | 28 d | 1 d | 28 d | |
| 0 | 18.23 | 24.04 | 9.85 | 13.35 | 27.15 | 37.47 |
| 0.25 | 18.93 | 26.56 | 9.73 | 14.10 | 25.31 | 38.42 |
| 0.50 | 19.56 | 26.09 | 9.04 | 14.03 | 22.36 | 37.67 |
| 0.75 | 20.92 | 27.04 | 9.33 | 14.05 | 24.11 | 37.53 |
| 1.00 | 20.16 | 26.35 | 9.11 | 13.79 | 23.23 | 36.99 |
| Be | S Band | C Band | X Band | Ku Band | Total | |
|---|---|---|---|---|---|---|
| FGP/Cement | ||||||
| 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
| 0.25% | 0.00 | 0.20 | 0.00 | 0.00 | 0.20 | |
| 0.5% | 0.00 | 0.96 | 2.04 | 5.00 | 7.76 | |
| 0.75% | 0.00 | 0.46 | 1.86 | 0.06 | 2.38 | |
| 1.0% | 0.24 | 0.24 | 0.80 | 0.00 | 1.28 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, Z.; Zhang, Z.; Shen, W.; Shi, W.; Liu, T.; Li, W.; Xie, A. Flash Graphene-Modified Portland Cement Paste with Both High Electromagnetic and Mechanical Performances at a Low Percolation Threshold. Materials 2026, 19, 266. https://doi.org/10.3390/ma19020266
Wang Z, Zhang Z, Shen W, Shi W, Liu T, Li W, Xie A. Flash Graphene-Modified Portland Cement Paste with Both High Electromagnetic and Mechanical Performances at a Low Percolation Threshold. Materials. 2026; 19(2):266. https://doi.org/10.3390/ma19020266
Chicago/Turabian StyleWang, Zixiao, Zhen Zhang, Wenqing Shen, Weizheng Shi, Tingting Liu, Wenyu Li, and Aming Xie. 2026. "Flash Graphene-Modified Portland Cement Paste with Both High Electromagnetic and Mechanical Performances at a Low Percolation Threshold" Materials 19, no. 2: 266. https://doi.org/10.3390/ma19020266
APA StyleWang, Z., Zhang, Z., Shen, W., Shi, W., Liu, T., Li, W., & Xie, A. (2026). Flash Graphene-Modified Portland Cement Paste with Both High Electromagnetic and Mechanical Performances at a Low Percolation Threshold. Materials, 19(2), 266. https://doi.org/10.3390/ma19020266
