Advances in Metamaterials: Structure, Properties and Applications
Conflicts of Interest
References
- Fu, R.; Chen, K.; Li, Z.; Yu, S.; Zheng, G. Metasurface-based nanoprinting: Principle, design and advances. Opto-Electron. Sci. 2022, 1, 220011. [Google Scholar] [CrossRef]
- Peng, Z.H.; Cotrufo, M.; Xu, D.; Mann, S.A.; Qiu, S.; Basov, D.N.; Delor, M.; Alú, A.; Schuck, P.J.; Trovatello, C. 3R-stacked transition metal dichalcogenide non-local metasurface for efficient second-harmonic generation. Nat. Photonics 2025, 19, 1376–1384. [Google Scholar] [CrossRef]
- Bai, X.Y.; Tan, S.R.; Mikki, S.; Li, E.P.; Cui, T.J. Information-theoretic measures for reconfigurable metasurface-enabled direct digital modulation systems: An electromagnetic perspective. Prog. Electromagn. Res. 2024, 179, 1–18. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Jiang, Z.H.; Shi, T.; Tang, M.C.; Zhou, Z.; Qiu, C.W. Metantenna: When metasurface meets antenna again. IEEE Trans. Antennas Propag. 2020, 68, 1332–1347. [Google Scholar] [CrossRef]
- Liao, D.S.; Wang, C.; Zhu, X.K.; Jing, L.Q.; Li, M.; Wang, Z.J. Global designed angle-multiplexed metasurface for holographic imaging enabled by the diffractive neural network. Prog. Electromagn. Res. 2025, 183, 81–90. [Google Scholar] [CrossRef]
- Wang, H.; He, Y.; Zhu, H.; Dong, H.; Wang, S. Research progress and prospects of metasurface polarization devices. Opto-Electron. Eng. 2024, 51, 240095. [Google Scholar]
- Feng, N.X.; Wang, H.; Wang, X.; Zhang, Y.X.; Qian, C.; Huang, Z.X.; Chen, H.S. Highly accurate and efficient 3D implementations empowered by deep neural network for 2DLMs-based metamaterials. Prog. Electromagn. Res. 2024, 180, 1–11. [Google Scholar] [CrossRef]
- Shi, Z.; Khorasaninejad, M.; Huang, Y.W.; Roques-Carmes, C.; Zhu, A.Y.; Chen, W.T.; Capasso, F. Single-layer metasurface with controllable multiwavelength functions. Nano Lett. 2018, 18, 2420–2427. [Google Scholar] [CrossRef]
- Assouar, B.; Liang, B.; Wu, Y.; Li, Y.; Cheng, J.C.; Jing, Y. Acoustic metasurfaces. Nat. Rev. Mater. 2018, 3, 460–472. [Google Scholar] [CrossRef]
- Xie, B.; Tang, K.; Cheng, H.; Liu, Z.; Chen, S.; Tian, J. Coding acoustic metasurfaces. Adv. Mater. 2017, 29, 1603507. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, Z.; Chu, Y. A hybrid optimization design method based on TOA and GD for improving the diffuse reflection uniformity of acoustic metasurfaces. Materials 2025, 18, 2562. [Google Scholar] [CrossRef]
- Bi, S.; Yang, F.; Shen, X.; Zhang, J.; Yang, X.; Zhang, H.; Peng, W. Analysis of influencing factors for stackable and expandable acoustic metamaterial with multiple tortuous channels. Materials 2023, 16, 6643. [Google Scholar] [CrossRef]
- Bi, S.; Yang, F.; Tang, S.; Shen, X.; Zhang, X.; Zhu, J.; Yang, X.; Peng, W.; Yuan, F. Effects of aperture shape on absorption property of acoustic metamaterial of parallel-connection Helmholtz resonator. Materials 2023, 16, 1597. [Google Scholar] [CrossRef]
- Deng, Z.L.; Li, G. Metasurface optical holography. Mater. Today Phys. 2017, 3, 16–32. [Google Scholar] [CrossRef]
- Deng, Y.; Cai, Z.; Ding, Y.; Bozhevolnyi, S.I.; Ding, F. Recent progress in metasurface-enabled optical waveplates. Nanophotonics 2022, 11, 2219–2244. [Google Scholar] [CrossRef]
- Meng, C.; Thrane, P.C.; Ding, F.; Gjessing, J.; Thomaschewski, M.; Wu, C.; Bozhevolnyi, S.I. Dynamic piezoelectric MEMS-based optical metasurfaces. Sci. Adv. 2021, 7, eabg5639. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Cheng, X.; Lan, Y.; Li, Z.; Feng, C.; Huang, Y.; Tang, Y.; Li, H.; Peng, Y. Numerical study of optical nonreciprocal transmission via liquid metamaterial nonlinearity. Materials 2025, 18, 2241. [Google Scholar] [CrossRef] [PubMed]
- Shan, B.; Shen, Y.; Yi, X.; Chi, X.; Chen, K. Agile inverse design of polarization-independent multi-functional reconfiguration metamaterials based on doped VO2. Materials 2024, 17, 3534. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Ding, X.; Li, C.; Tang, S. Achieving photonic spin hall effect, spin-selective absorption, and beam deflection with a vanadium dioxide metasurface. Materials 2023, 16, 4259. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, J.-H. Broadband metasurface absorber based on an optimal combination of copper tiles and chip resistors. Materials 2023, 16, 2692. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, S.; Song, N.; Xue, D. Large-scale metasurface simulation using local-segmented approach. Materials 2025, 18, 649. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ruan, H.; Liu, C.; Li, Y.; Shuang, Y.; Alù, A.; Cui, T.J. Machine-learning reprogrammable metasurface imager. Nat. Commun. 2019, 10, 1082. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, J.; Zheng, B.; Qian, C.; Cai, T.; Li, E.; Chen, H. Eye accommodation-inspired neuro-metasurface focusing. Nat. Commun. 2023, 14, 3301. [Google Scholar] [CrossRef]
- Hu, J.; Bandyopadhyay, S.; Liu, Y.H.; Shao, L.Y. A review on metasurface: From principle to smart metadevices. Front. Phys. 2021, 8, 586087. [Google Scholar] [CrossRef]
- Liao, J.; Shi, Z.; Dou, D.; Lu, H.; Ni, K.; Zhou, Q.; Wang, X. Deep learning-assisted design for high-Q-value dielectric metasurface structures. Materials 2025, 18, 1554. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zhu, R.; Wang, C.; Hua, T.; Zhang, S.; Chen, T. Soft actor–critic-driven adaptive focusing under obstacles. Materials 2023, 16, 1366. [Google Scholar] [CrossRef]
- Li, P.; Zhao, J.; Luo, C.; Pei, Z.; Jin, H.; Huang, Y.; Zhou, W.; Zheng, B. Self-adaptive intelligent metasurface cloak system with integrated sensing units. Materials 2024, 17, 4863. [Google Scholar] [CrossRef]
- Lu, H.; Luo, C.F.; Pei, Z.C.; Zhu, P.X.; Dong, Y.; Chen, C.B.; Zhu, R.R.; Zhao, J.W. FlexSARCloak: A flexible SAR cloak driven by task-oriented learning. ACS Appl. Mater. Interfaces 2025, 17, 2139–2147. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Jiang, H.; Chen, C.; Zhu, P.; Zhang, S.; Zhu, R.R.; Lu, H. Broadband flexible metasurface for SAR imaging cloaking. Materials 2025, 18, 3969. [Google Scholar] [CrossRef]
- Lupoiu, R.; Shao, Y.; Dai, T.; Mao, C.; Edée, K.; Fan, J.A. A multi-agentic framework for real-time, autonomous freeform metasurface design. Sci. Adv. 2025, 11, eadx8006. [Google Scholar] [CrossRef]
- Vasile, A.; Constantinescu, D.M.; Coropețchi, I.C.; Sorohan, Ș.; Apostol, D.A. Definition, fabrication, and compression testing of sandwich structures with novel TPMS-based cores. Materials 2024, 17, 5150. [Google Scholar] [CrossRef] [PubMed]
- Straub, T.; Fell, J.; Zabler, S.; Gustmann, T.; Korn, H.; Fischer, S.C.L. Characterization of filigree additively manufactured NiTi structures using micro tomography and micromechanical testing for metamaterial material models. Materials 2023, 16, 676. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Fang, L.; Xi, R.; Mu, Y.; Han, J.; Feng, Q.; Li, Y.; Li, L.; Zheng, B. Polarization-insensitive metasurface with high-gain large-angle beam deflection. Materials 2024, 17, 5688. [Google Scholar] [CrossRef]
- Zhan, H.; Gu, M.; Tian, Y.; Feng, H.; Zhu, M.; Zhou, H.; Wang, L. Review for wireless communication technology based on digital encoding metasurfaces. Opto-Electron. Adv. 2025, 8, 240315. [Google Scholar] [CrossRef]
- Yang, H.; Xu, J.; Peng, M.; He, H.; Jiang, Y.; Yu, D.; Gong, H. Vector analog computing via on-demand metasurface dispersive polarization transformation. Sci. Adv. 2025, 11, eadz5123. [Google Scholar] [CrossRef]
- Soma, G.; Ariu, K.; Karakida, S.; Tsubai, Y.; Tanemura, T. Subvolt high-speed free-space modulator with electro-optic metasurface. Nat. Nanotechnol. 2025, 20, 1625–1632. [Google Scholar] [CrossRef]
- Shirmanesh, G.K.; Sokhoyan, R.; Wu, P.C.; Atwater, H.A. Electro-optically tunable multifunctional metasurfaces. ACS Nano 2020, 14, 6912–6920. [Google Scholar] [CrossRef] [PubMed]
- Zhan, J.; Zhang, Y.; Li, Q.; Song, Z. Broadband multifunctional metasurface for dynamic wavefront modulation. Opt. Lasers Eng. 2025, 194, 109193. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, J.; Zhu, P.; Song, W.; Zhu, S.; Zhu, R.; Chen, H. Neural network-assisted metasurface design for broadband remote invisibility. Adv. Funct. Mater. 2025, 35, 2506085. [Google Scholar] [CrossRef]
- Zhu, P.; Lu, H.; Han, H.; Zhu, R.; Zhou, W.; Zhu, S.; Chen, H. An optically transparent transmissive metasurface for user-defined broadband electromagnetic illusion generation. Small Struct. 2025, 6, e202500351. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, K.; Xu, Z.; Zhang, N.; Wang, J.; Zhao, J.; Feng, Y. Metasurface-assisted wireless communication with physical level information encryption. Adv. Sci. 2022, 9, 2204558. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zheng, S.; Zhang, H.; Li, N.; Shen, D.; He, T.; Yu, X. A THz-OAM wireless communication system based on transmissive metasurface. IEEE Trans. Antennas Propag. 2023, 71, 4194–4203. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zheng, B.; Zhu, P. Advances in Metamaterials: Structure, Properties and Applications. Materials 2026, 19, 85. https://doi.org/10.3390/ma19010085
Zheng B, Zhu P. Advances in Metamaterials: Structure, Properties and Applications. Materials. 2026; 19(1):85. https://doi.org/10.3390/ma19010085
Chicago/Turabian StyleZheng, Bin, and Peixuan Zhu. 2026. "Advances in Metamaterials: Structure, Properties and Applications" Materials 19, no. 1: 85. https://doi.org/10.3390/ma19010085
APA StyleZheng, B., & Zhu, P. (2026). Advances in Metamaterials: Structure, Properties and Applications. Materials, 19(1), 85. https://doi.org/10.3390/ma19010085

