Biological and Physicochemical Characterization of Biodegradable Aliphatic Polyesters with Copper Deposited by Magnetron Sputtering
Abstract
1. Introduction
2. Materials and Methods
- Cycle 1: heating time 15 min, pressure 20–30 bar, temperature 200–250 °C
- Cycle 2: heating time 15 min, pressure 26–38 bar, temperature 200–250 °C
- Cycle 2: heating time 15 min, pressure 30–44 bar, temperature 200–250 °C
- Ci—metal concentration in the analyzed solution [mg/L];
- mi—mass of the mineralized sample PLA or PCL [g];
- V—volume of the sample solution [mL].
- —the solar irradiance
- —the erythema action spectrum, measure of the harmfulness of UV radiation for human skin
- —the wavelength interval of the measurements
- —the spectral transmittance at wavelength
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, S.; Dong, Q.; Che, S.; Li, R.; Tang, K.H.D. Bioplastics and Biodegradable Plastics: A Review of Recent Advances, Feasibility and Cleaner Production. Sci. Total Environ. 2025, 969, 178911. [Google Scholar] [CrossRef] [PubMed]
- Kesting, M.B.; Meyer, J.; Seide, G. Assessment of Polylactide as Optical Material. Opt. Mater. X 2024, 24, 100360. [Google Scholar] [CrossRef]
- Wang, G.; Huang, D.; Ji, J.; Völker, C.; Wurm, F.R. Seawater-Degradable Polymers—Fighting the Marine Plastic Pollution. Adv. Sci. 2021, 8, 2001121. [Google Scholar] [CrossRef] [PubMed]
- Narancic, T.; Verstichel, S.; Reddy Chaganti, S.; Morales-Gamez, L.; Kenny, S.T.; De Wilde, B.; Babu Padamati, R.; O’Connor, K.E. Biodegradable Plastic Blends Create New Possibilities for End-of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution. Environ. Sci. Technol. 2018, 52, 10441–10452. [Google Scholar] [CrossRef]
- Rheinberger, T.; Wolfs, J.; Paneth, A.; Gojzewski, H.; Paneth, P.; Wurm, F.R. RNA-Inspired and Accelerated Degradation of Polylactide in Seawater. J. Am. Chem. Soc. 2021, 143, 16673–16681. [Google Scholar] [CrossRef]
- Morão, A.; de Bie, F. Life Cycle Impact Assessment of Polylactic Acid (PLA) Produced from Sugarcane in Thailand. J. Polym. Environ. 2019, 27, 2523–2539. [Google Scholar] [CrossRef]
- Wellenreuther, C.; Wolf, A.; Zander, N. Cost Structure of Bio-Based Plastics: A Monte-Carlo-Analysis for PLA; HWWI Research Paper No. 197; Hamburgisches WeltWirtschaftsInstitut (HWWI): Hamburg, Germany, 2021. [Google Scholar]
- Hofvendahl, K.; Hahn–Hägerdal, B. Factors Affecting the Fermentative Lactic Acid Production from Renewable Resources1. Enzym. Microb. Technol. 2000, 26, 87–107. [Google Scholar] [CrossRef]
- Anuradha, R.; Suresh, A.K.; Venkatesh, K.V. Simultaneous Saccharification and Fermentation of Starch to Lactic Acid. Process Biochem. 1999, 35, 367–375. [Google Scholar] [CrossRef]
- Kwan, T.H.; Hu, Y.; Lin, C.S.K. Techno-Economic Analysis of a Food Waste Valorisation Process for Lactic Acid, Lactide and Poly(Lactic Acid) Production. J. Clean. Prod. 2018, 181, 72–87. [Google Scholar] [CrossRef]
- Singhvi, M.; Gokhale, D. Biomass to Biodegradable Polymer (PLA). RSC Adv. 2013, 3, 13558. [Google Scholar] [CrossRef]
- Hussain, M.; Khan, S.M.; Shafiq, M.; Abbas, N. A Review on PLA-Based Biodegradable Materials for Biomedical Applications. Giant 2024, 18, 100261. [Google Scholar] [CrossRef]
- Swetha, T.A.; Bora, A.; Mohanrasu, K.; Balaji, P.; Raja, R.; Ponnuchamy, K.; Muthusamy, G.; Arun, A. A Comprehensive Review on Polylactic Acid (PLA)—Synthesis, Processing and Application in Food Packaging. Int. J. Biol. Macromol. 2023, 234, 123715. [Google Scholar] [CrossRef] [PubMed]
- Taib, N.-A.A.B.; Rahman, M.R.; Huda, D.; Kuok, K.K.; Hamdan, S.; Bakri, M.K.B.; Julaihi, M.R.M.B.; Khan, A. A Review on Poly Lactic Acid (PLA) as a Biodegradable Polymer. Polym. Bull. 2023, 80, 1179–1213. [Google Scholar] [CrossRef]
- Dil, E.J.; Ajji, A.; Saffar, A. Polyester Materials in Biomedical Applications. In Polyester Films; Wiley: Hoboken, NJ, USA, 2023; pp. 306–342. [Google Scholar]
- Arif, Z.U.; Khalid, M.Y.; Noroozi, R.; Hossain, M.; Shi, H.H.; Tariq, A.; Ramakrishna, S.; Umer, R. Additive Manufacturing of Sustainable Biomaterials for Biomedical Applications. Asian J. Pharm. Sci. 2023, 18, 100812. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Gao, X.; Wu, J.; Zhou, T.; Nguyen, T.T.; Wang, Y. Biodegradable Polylactic Acid and Its Composites: Characteristics, Processing, and Sustainable Applications in Sports. Polymers 2023, 15, 3096. [Google Scholar] [CrossRef]
- Ntrivala, M.A.; Pitsavas, A.C.; Lazaridou, K.; Baziakou, Z.; Karavasili, D.; Papadimitriou, M.; Ntagkopoulou, C.; Balla, E.; Bikiaris, D.N. Polycaprolactone (PCL): The Biodegradable Polyester Shaping the Future of Materials—A Review on Synthesis, Properties, Biodegradation, Applications and Future Perspectives. Eur. Polym. J. 2025, 234, 114033. [Google Scholar] [CrossRef]
- Thaore, V.; Chadwick, D.; Shah, N. Sustainable Production of Chemical Intermediates for Nylon Manufacture: A Techno-Economic Analysis for Renewable Production of Caprolactone. Chem. Eng. Res. Des. 2018, 135, 140–152. [Google Scholar] [CrossRef]
- Patiño Vidal, C.; Luzi, F.; Puglia, D.; López-Carballo, G.; Rojas, A.; Galotto, M.J.; López de Dicastillo, C. Development of a Sustainable and Antibacterial Food Packaging Material Based in a Biopolymeric Multilayer System Composed by Polylactic Acid, Chitosan, Cellulose Nanocrystals and Ethyl Lauroyl Arginate. Food Packag. Shelf Life 2023, 36, 101050. [Google Scholar] [CrossRef]
- Shao, L.; Xi, Y.; Weng, Y. Recent Advances in PLA-Based Antibacterial Food Packaging and Its Applications. Molecules 2022, 27, 5953. [Google Scholar] [CrossRef]
- Bartošová, L.; Janalíková, M.; Sedlaříková, J.; Šišková, A.O.; Kozics, K.; Blažíčková, M.; Matošková, L.; Koutný, M.; Pleva, P. Antibacterial and Biodegradable PLA-Based Nanofibers Loaded with Natural Phenolic Monoterpenes for Sustainable Biomedical or Food Application. New Biotechnol. 2025, 87, 1–11. [Google Scholar] [CrossRef]
- Pan, N.; Wei, Y.; Zuo, M.; Li, R.; Ren, X.; Huang, T.-S. Antibacterial Poly (ε-Caprolactone) Fibrous Membranes Filled with Reduced Graphene Oxide-Silver. Colloids Surf. A Physicochem. Eng. Asp. 2020, 603, 125186. [Google Scholar] [CrossRef]
- Zhang, C.; Ru, Y.; You, J.; Lin, R.; Chen, S.; Qi, Y.; Li, D.; Zhang, C.; Qiu, Z. Antibacterial Properties of PCL@45s5 Composite Biomaterial Scaffolds Based on Additive Manufacturing. Polymers 2024, 16, 3379. [Google Scholar] [CrossRef] [PubMed]
- Kudzin, M.H.; Mrozińska, Z.; Kaczmarek, A.; Lisiak-Kucińska, A. Deposition of Copper on Poly(Lactide) Non-Woven Fabrics by Magnetron Sputtering—Fabrication of New Multi-Functional, Antimicrobial Composite Materials. Materials 2020, 13, 3971. [Google Scholar] [CrossRef] [PubMed]
- Mrozińska, Z.; Kudzin, M.H.; Ponczek, M.B.; Kaczmarek, A.; Król, P.; Lisiak-Kucińska, A.; Żyłła, R.; Walawska, A. Biochemical Approach to Poly(Lactide)–Copper Composite—Impact on Blood Coagulation Processes. Materials 2024, 17, 608. [Google Scholar] [CrossRef] [PubMed]
- Cady, N.C.; Behnke, J.L.; Strickland, A.D. Copper-Based Nanostructured Coatings on Natural Cellulose: Nanocomposites Exhibiting Rapid and Efficient Inhibition of a Multi-Drug Resistant Wound Pathogen, A. Baumannii, and Mammalian Cell Biocompatibility In Vitro. Adv. Funct. Mater. 2011, 21, 2506–2514. [Google Scholar] [CrossRef]
- Emam, H.E.; Manian, A.P.; Široká, B.; Duelli, H.; Merschak, P.; Redl, B.; Bechtold, T. Copper(I)Oxide Surface Modified Cellulose Fibers—Synthesis, Characterization and Antimicrobial Properties. Surf. Coat. Technol. 2014, 254, 344–351. [Google Scholar] [CrossRef]
- Uriu-Adams, J.Y.; Keen, C.L. Copper, Oxidative Stress, and Human Health. Mol. Asp. Med. 2005, 26, 268–298. [Google Scholar] [CrossRef]
- Su, F.; Yao, K. Facile Fabrication of Superhydrophobic Surface with Excellent Mechanical Abrasion and Corrosion Resistance on Copper Substrate by a Novel Method. ACS Appl. Mater. Interfaces 2014, 6, 8762–8770. [Google Scholar] [CrossRef]
- Durrant, P.J.; Durrant, B. Introduction to Advanced Inorganic Chemistry; Longmans, Green and Co.: London, UK, 1962. [Google Scholar]
- Jiang, H.; Li, L.; Li, Z.; Chu, X. Metal-Based Nanoparticles in Antibacterial Application in Biomedical Field: Current Development and Potential Mechanisms. Biomed. Microdevices 2024, 26, 12. [Google Scholar] [CrossRef]
- Gaetke, L. Copper Toxicity, Oxidative Stress, and Antioxidant Nutrients. Toxicology 2003, 189, 147–163. [Google Scholar] [CrossRef]
- Arredondo, M.; Núñez, M.T. Iron and Copper Metabolism. Mol. Asp. Med. 2005, 26, 313–327. [Google Scholar] [CrossRef]
- Festa, R.A.; Thiele, D.J. Copper: An Essential Metal in Biology. Curr. Biol. 2011, 21, R877–R883. [Google Scholar] [CrossRef] [PubMed]
- Grass, G.; Rensing, C.; Solioz, M. Metallic Copper as an Antimicrobial Surface. Appl. Environ. Microbiol. 2011, 77, 1541–1547. [Google Scholar] [CrossRef] [PubMed]
- Vincent, M.; Duval, R.E.; Hartemann, P.; Engels-Deutsch, M. Contact Killing and Antimicrobial Properties of Copper. J. Appl. Microbiol. 2018, 124, 1032–1046. [Google Scholar] [CrossRef] [PubMed]
- Slavin, Y.N.; Asnis, J.; Häfeli, U.O.; Bach, H. Metal Nanoparticles: Understanding the Mechanisms behind Antibacterial Activity. J. Nanobiotechnol. 2017, 15, 65. [Google Scholar] [CrossRef]
- Sánchez-López, E.; Gomes, D.; Esteruelas, G.; Bonilla, L.; Lopez-Machado, A.L.; Galindo, R.; Cano, A.; Espina, M.; Ettcheto, M.; Camins, A.; et al. Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials 2020, 10, 292. [Google Scholar] [CrossRef]
- Dalecki, A.G.; Crawford, C.L.; Wolschendorf, F. Copper and Antibiotics. Adv. Microb. Physiol. 2017, 70, 193–260. [Google Scholar]
- Chatterjee, A.K.; Chakraborty, R.; Basu, T. Mechanism of Antibacterial Activity of Copper Nanoparticles. Nanotechnology 2014, 25, 135101. [Google Scholar] [CrossRef]
- Bastos, C.A.P.; Faria, N.; Wills, J.; Malmberg, P.; Scheers, N.; Rees, P.; Powell, J.J. Copper Nanoparticles Have Negligible Direct Antibacterial Impact. NanoImpact 2020, 17, 100192. [Google Scholar] [CrossRef]
- Khodashenas, B.; Ghorbani, H.R. Synthesis of Copper Nanoparticles: An Overview of the Various Methods. Korean J. Chem. Eng. 2014, 31, 1105–1109. [Google Scholar] [CrossRef]
- Camacho-Flores, B.A.; Martínez-Álvarez, O.; Arenas-Arrocena, M.C.; Garcia-Contreras, R.; Argueta-Figueroa, L.; de la Fuente-Hernández, J.; Acosta-Torres, L.S. Copper: Synthesis Techniques in Nanoscale and Powerful Application as an Antimicrobial Agent. J. Nanomater. 2015, 2015, 415238. [Google Scholar] [CrossRef]
- Rafique, M.; Shaikh, A.J.; Rasheed, R.; Tahir, M.B.; Bakhat, H.F.; Rafique, M.S.; Rabbani, F. A Review on Synthesis, Characterization and Applications of Copper Nanoparticles Using Green Method. Nano 2017, 12, 1750043. [Google Scholar] [CrossRef]
- Fernández-Arias, M.; Boutinguiza, M.; del Val, J.; Riveiro, A.; Rodríguez, D.; Arias-González, F.; Gil, J.; Pou, J. Fabrication and Deposition of Copper and Copper Oxide Nanoparticles by Laser Ablation in Open Air. Nanomaterials 2020, 10, 300. [Google Scholar] [CrossRef] [PubMed]
- Segura, G.; Guzmán, P.; Zuñiga, P.; Chaves, S.; Barrantes, Y.; Navarro, G.; Asenjo, J.; Guadamuz, S.; Vargas, V.; Chaves, J. Copper Deposition on Fabrics by Rf Plasma Sputtering for Medical Applications. J. Phys. Conf. Ser. 2015, 591, 012046. [Google Scholar] [CrossRef]
- Tan, X.-Q.; Liu, J.-Y.; Niu, J.-R.; Liu, J.-Y.; Tian, J.-Y. Recent Progress in Magnetron Sputtering Technology Used on Fabrics. Materials 2018, 11, 1953. [Google Scholar] [CrossRef]
- Kudzin, M.H.; Boguń, M.; Mrozińska, Z.; Kaczmarek, A. Physical Properties, Chemical Analysis, and Evaluation of Antimicrobial Response of New Polylactide/Alginate/Copper Composite Materials. Mar. Drugs 2020, 18, 660. [Google Scholar] [CrossRef]
- da Silva, D.J.; Ferreira, G.S.; Duran, A.; Fonseca, F.L.A.; Parra, D.F.; Bueno, R.F.; Rosa, D.S. Copper Coatings on Poly(Lactic Acid) via Rapid Magnetron Sputtering: Morphology, Chemistry, and Antimicrobial Performance against Bacteria and SARS-CoV-2. Mater. Today Commun. 2023, 34, 105440. [Google Scholar] [CrossRef]
- Muñoz-Escobar, A.; de Jesús Ruíz-Baltazar, Á.; Reyes-López, S.Y. Novel Route of Synthesis of PCL-CuONPs Composites with Antimicrobial Properties. Dose-Response 2019, 17, 155932581986950. [Google Scholar] [CrossRef]
- Kelly, P.J.; Arnell, R.D. Magnetron Sputtering: A Review of Recent Developments and Applications. Vacuum 2000, 56, 159–172. [Google Scholar] [CrossRef]
- EN 13758-1:2002; Textiles. Solar UV Protective Properties. Method of Test for Apparel Fabrics. International Organization for Standardization: Geneva, Switzerland, 2002.
- Cichosz, S.; Masek, A. Thermal Behavior of Green Cellulose-Filled Thermoplastic Elastomer Polymer Blends. Molecules 2020, 25, 1279. [Google Scholar] [CrossRef]
- Plota, A.; Masek, A. Plant-Origin Stabilizer as an Alternative of Natural Additive to Polymers Used in Packaging Materials. Int. J. Mol. Sci. 2021, 22, 4012. [Google Scholar] [CrossRef] [PubMed]
- Masek, A.; Latos-Brozio, M. The Effect of Substances of Plant Origin on the Thermal and Thermo-Oxidative Ageing of Aliphatic Polyesters (PLA, PHA). Polymers 2018, 10, 1252. [Google Scholar] [CrossRef] [PubMed]
- EN ISO 20645:2006; Textile Fabrics. Determination of Antibacterial Activity—Agar Diffusion Plate Test. International Organization for Standardization: Geneva, Switzerland, 2006.
- González-López, M.E.; Martín del Campo, A.S.; Robledo-Ortíz, J.R.; Arellano, M.; Pérez-Fonseca, A.A. Accelerated Weathering of Poly(Lactic Acid) and Its Biocomposites: A Review. Polym. Degras. Stab. 2020, 179, 109290. [Google Scholar] [CrossRef]
- Fitzgerald, K.P.; Nairn, J.; Atrens, A. The Chemistry of Copper Patination. Corros. Sci. 1998, 40, 2029–2050. [Google Scholar] [CrossRef]
- Leygraf, C.; Chang, T.; Herting, G.; Odnevall Wallinder, I. The Origin and Evolution of Copper Patina Colour. Corros. Sci. 2019, 157, 337–346. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, S.; Lee, J.; Jo, Y.; Seo, Y.; Lee, M.; Lee, Y.; Cho, C.R.; Kim, J.; Cheon, M.; et al. Color of Copper/Copper Oxide. Adv. Mater. 2021, 33, 2007345. [Google Scholar] [CrossRef]
- Gattinoni, C.; Michaelides, A. Atomistic Details of Oxide Surfaces and Surface Oxidation: The Example of Copper and Its Oxides. Surf. Sci. Rep. 2015, 70, 424–447. [Google Scholar] [CrossRef]
- Aromaa, J.; Kekkonen, M.; Mousapour, M.; Jokilaakso, A.; Lundström, M. The Oxidation of Copper in Air at Temperatures up to 100 °C. Corros. Mater. Degrad. 2021, 2, 625–640. [Google Scholar] [CrossRef]
- Costanzo, G.D.; Ribba, L.; Goyanes, S.; Ledesma, S. Enhancement of the Optical Response in a Biodegradable Polymer/Azo-Dye Film by the Addition of Carbon Nanotubes. J. Phys. D Appl. Phys. 2014, 47, 135103. [Google Scholar] [CrossRef]
- Pavon, C.; Aldas, M.; De La Rosa-Ramírez, H.; Samper, M.D.; Arrieta, M.P.; López-Martínez, J. Bilayer Films of Poly(E-caprolactone) Electrosprayed with Gum Rosin Microspheres: Processing and Characterization. Polym. Adv. Technol. 2021, 32, 3770–3781. [Google Scholar] [CrossRef]
- Ramyadevi, J.; Jeyasubramanian, K.; Marikani, A.; Rajakumar, G.; Rahuman, A.A.; Santhoshkumar, T.; Kirthi, A.V.; Jayaseelan, C.; Marimuthu, S. Copper Nanoparticles Synthesized by Polyol Process Used to Control Hematophagous Parasites. Parasitol. Res. 2011, 109, 1403–1415. [Google Scholar] [CrossRef] [PubMed]
- Plascencia-Hernández, F.; Luna, A.L.; Colbeau-Justin, C.; Santiago, P.; Garcia-Rocha, M.; Valverde-Aguilar, G.; Valenzuela, M.A. Cu2O Cubic and Polyhedral Structures versus Commercial Powder: Shape Effect on Photocatalytic Activity under Visible Light. J. Saudi Chem. Soc. 2019, 23, 1016–1023. [Google Scholar] [CrossRef]
- Virág, Á.D.; Tóth, C.; Molnár, K. Photodegradation of Polylactic Acid: Characterisation of Glassy and Melt Behaviour as a Function of Molecular Weight. Int. J. Biol. Macromol. 2023, 252, 126336. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.K.; Aljishi, A.; Khan, F.; Ul-Hamid, A.; Rahman, M.M. Fabrication and Wetting Characteristics of Copper Thin Film: An Active Layer for SPR-Based Sensor Applications. J. Sci. Adv. Mater. Devices 2025, 10, 100839. [Google Scholar] [CrossRef]
- Razavifar, M.; Abdi, A.; Nikooee, E.; Aghili, O.; Riazi, M. Quantifying the Impact of Surface Roughness on Contact Angle Dynamics under Varying Conditions. Sci. Rep. 2025, 15, 16611. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of Solid Surfaces to Wetting by Water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Chow, T.S. Wetting of Rough Surfaces. J. Phys. Condens. Matter 1998, 10, L445–L451. [Google Scholar] [CrossRef]
- Masek, A.; Plota, A. Influence of a Natural Plant Antioxidant on the Ageing Process of Ethylene-Norbornene Copolymer (Topas). Int. J. Mol. Sci. 2021, 22, 4018. [Google Scholar] [CrossRef]
- Xie, Z.; Zhang, P.; Zhang, Z.; Chen, C.; Wang, X. The Choice of Antimicrobial Polymers: Hydrophilic or Hydrophobic? Chin. Chem. Lett. 2024, 35, 109768. [Google Scholar] [CrossRef]
- Hasan, J.; Crawford, R.J.; Ivanova, E.P. Antibacterial Surfaces: The Quest for a New Generation of Biomaterials. Trends Biotechnol. 2013, 31, 295–304. [Google Scholar] [CrossRef]
- Feng, G.; Cheng, Y.; Wang, S.-Y.; Borca-Tasciuc, D.A.; Worobo, R.W.; Moraru, C.I. Bacterial Attachment and Biofilm Formation on Surfaces Are Reduced by Small-Diameter Nanoscale Pores: How Small Is Small Enough? npj Biofilms Microbiomes 2015, 1, 15022. [Google Scholar] [CrossRef]
- Ren, G.; Hu, D.; Cheng, E.W.C.; Vargas-Reus, M.A.; Reip, P.; Allaker, R.P. Characterisation of Copper Oxide Nanoparticles for Antimicrobial Applications. Int. J. Antimicrob. Agents 2009, 33, 587–590. [Google Scholar] [CrossRef]
- Kudzin, M.H.; Mrozińska, Z.; Kaczmarek, A.; Chruściel, J.J.; Gloc, M.; Żyłła, R. Preparation and Biochemical and Microbial Behavior of Poly(Lactide) Composites with Polyethersulfone and Copper-Complexed Cellulose Phosphate. Materials 2025, 18, 2954. [Google Scholar] [CrossRef]
- Mrozińska, Z.; Świerczyńska, M.; Juszczak, M.; Woźniak, K.; Kudzin, M.H. Evaluation of Antimicrobial Activity, Hemostatic Efficacy, Blood Coagulation Dynamics, and DNA Damage of Linen–Copper Composite Materials. J. Compos. Sci. 2025, 9, 30. [Google Scholar] [CrossRef]
- Świerczyńska, M.; Mrozińska, Z.; Juszczak, M.; Woźniak, K.; Kudzin, M.H. Modification of Cotton with Chitosan: Deposition of Copper(II) Sulfate by Complexation Copper Ions. Processes 2024, 12, 2772. [Google Scholar] [CrossRef]
- Mrozińska, Z.; Kaczmarek, A.; Świerczyńska, M.; Juszczak, M.; Kudzin, M.H. Biochemical Behavior, Influence on Cell DNA Condition, and Microbiological Properties of Wool and Wool–Copper Materials. Materials 2024, 17, 2878. [Google Scholar] [CrossRef]








| Sample Name | Copper Application Time [min] | Conditions [-] |
|---|---|---|
| PLA | 0 | - |
| PLA_Cuo_20 | 20 | 1 |
| PLA_Cuo_40 | 40 | 2 |
| PCL | 0 | - |
| PCL_Cuo_20 | 20 | 1 |
| PCL_Cuo_40 | 40 | 2 |
| Sample | M Cuo [g/kg] |
|---|---|
| PLA | - |
| PLA_Cuo_20 | 0.68 |
| PLA_Cuo_40 | 4.00 |
| PCL | - |
| PCL_Cuo_20 | 4.43 |
| PCL_Cuo_40 | 3.55 |
| Sample | UPF | UVA [%] | UVB [%] | %T [%] |
|---|---|---|---|---|
| PLA | 4.84 | 50.02 | 14.07 | 41.98 |
| PLA_Cuo_20 | >50 | 0.02 | 0.01 | 0.02 |
| PLA_Cuo_40 | >50 | 0.02 | 0.02 | 0.02 |
| PCL | 7.96 | 26.22 | 8.88 | 22.38 |
| PCL_Cuo_20 | >50 | 0.02 | 0.02 | 0.02 |
| PCL_Cuo_40 | >50 | 0.02 | 0.01 | 0.02 |
| Sample Name | Bacterial Growth Under the Sample | E. coli (ATCC 25922) | S. aureus (ATCC 6538) |
|---|---|---|---|
| PLA (reference) | Present | + | + |
| PLA_Cuo_20 | Partial | ± | ± |
| PLA_Cuo_40 | None | - | - |
| PCL (reference) | Present | + | + |
| PCL_Cuo_20 | None | - | - |
| PCL_Cuo_40 | None | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Latos-Brozio, M.; Drzazga, A.; Masek, A.; Mrozińska, Z.; Kudzin, M.H. Biological and Physicochemical Characterization of Biodegradable Aliphatic Polyesters with Copper Deposited by Magnetron Sputtering. Materials 2026, 19, 57. https://doi.org/10.3390/ma19010057
Latos-Brozio M, Drzazga A, Masek A, Mrozińska Z, Kudzin MH. Biological and Physicochemical Characterization of Biodegradable Aliphatic Polyesters with Copper Deposited by Magnetron Sputtering. Materials. 2026; 19(1):57. https://doi.org/10.3390/ma19010057
Chicago/Turabian StyleLatos-Brozio, Malgorzata, Aleksandra Drzazga, Anna Masek, Zdzisława Mrozińska, and Marcin H. Kudzin. 2026. "Biological and Physicochemical Characterization of Biodegradable Aliphatic Polyesters with Copper Deposited by Magnetron Sputtering" Materials 19, no. 1: 57. https://doi.org/10.3390/ma19010057
APA StyleLatos-Brozio, M., Drzazga, A., Masek, A., Mrozińska, Z., & Kudzin, M. H. (2026). Biological and Physicochemical Characterization of Biodegradable Aliphatic Polyesters with Copper Deposited by Magnetron Sputtering. Materials, 19(1), 57. https://doi.org/10.3390/ma19010057

