Application of Machine Learning Models in Predicting Vibration Frequencies of Thin Variable Thickness Plates
Abstract
1. Introduction
2. Methods
2.1. Theoretical Background
2.2. Finite Element Approach to Linear Plate Vibration Problems
2.3. Genetic Algorithm Optimization
3. Results and Discussion
3.1. Introductory Data Analysis
3.2. ANN Models Development
3.2.1. Development of the Baseline ANN Model
3.2.2. Boundary–Condition-Specific Model Optimization
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Avci, O.; Abdeljaber, O.; Kiranyaz, S.; Hussein, M.; Gabbouj, M.; Inman, D.J. A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications. Mech. Syst. Signal Process. 2021, 147, 107077. [Google Scholar] [CrossRef]
- Cunha, B.Z.; Droz, C.; Zine, A.M.; Foulard, S.; Ichchou, M. A review of machine learning methods applied to structural dynamics and vibroacoustic. Mech. Syst. Signal Process. 2023, 200, 110535. [Google Scholar] [CrossRef]
- Abubakar, S.M.; Karimi, M.U.; Mustafa, S.J.; Ahmad, B. Structural Engineering Applications Using Artificial Intelligence and Machine Learning: A Review. Int. J. Adv. Nat. Sci. Eng. Res. 2024, 8, 140–145. [Google Scholar]
- Sun, J.; Niederwestberg, J.; Cheng, F.; Chui, Y. Frequencies prediction of laminated timber plates using ann approach. J. Renew. Mater. 2020, 8, 319–328. [Google Scholar] [CrossRef]
- Prusty, J.K.; Papazafeiropoulos, G.; Mohanty, S.C. Free vibration analysis of sandwich plates with cut-outs: An experimental and numerical study with artificial neural network modelling. Compos. Struct. 2023, 321, 117328. [Google Scholar] [CrossRef]
- Al Rjoub, Y.S.; Alshatnawi, J.A. Free vibration of functionally-graded porous cracked plates. Structures 2020, 28, 2392–2403. [Google Scholar] [CrossRef]
- Reddy, M.R.S.; Reddy, B.S.; Reddy, V.N.; Sreenivasulu, S. Prediction of Natural Frequency of Laminated Composite Plates Using Artificial Neural Networks. Engineering 2012, 4, 329–337. [Google Scholar] [CrossRef]
- Altabey, W.A. Prediction of natural frequency of basalt fiber reinforced polymer (FRP) laminated variable thickness plates with intermediate elastic support using artificial neural networks (ANNs) method. J. Vibroeng. 2017, 19, 3668–3678. [Google Scholar] [CrossRef]
- Jodaei, A.; Jalal, M.; Yas, M.H. Free vibration analysis of functionally graded annular plates by state-space based differential quadrature method and comparative modeling by ANN. Compos. Part B Eng. 2012, 43, 340–353. [Google Scholar] [CrossRef]
- Rane, S.B.; Patil, R.A.; Raykar, N.R.; Kumbhar, S.B. A machine learning approach for investigation of the natural frequency of a nitinol-reinforced composite beam. Eng. Res. Express 2024, 6, 015003. [Google Scholar] [CrossRef]
- Rane, S.B.; Patil, R.A.; Raykar, N.R.; Kumbhar, S.B. Determining the Natural Frequency of Cantilever Beams Using ANN and Heuristic Search. Appl. Artif. Intell. 2018, 32, 309–334. [Google Scholar] [CrossRef]
- He, M.; Wang, Y.; Ram Ramakrishnan, K.; Zhang, Z. A comparison of machine learning algorithms for assessment of delamination in fiber-reinforced polymer composite beams. Struct. Health Monit. 2021, 20, 1997–2012. [Google Scholar] [CrossRef]
- Gillich, N.; Tufisi, C.; Sacarea, C.; Rusu, C.V.; Gillich, G.R.; Praisach, Z.I.; Ardeljan, M. Beam Damage Assessment Using Natural Frequency Shift and Machine Learning. Sensors 2022, 22, 1118. [Google Scholar] [CrossRef]
- Truong, T.T.; Lee, S.; Lee, J. An artificial neural network-differential evolution approach for optimization of bidirectional functionally graded beams. Compos. Struct. 2020, 233, 111517. [Google Scholar] [CrossRef]
- Yildirim, S. Free vibration of axially or transversely graded beams using finite-element and artificial intelligence. Alex. Eng. J. 2022, 61, 2220–2229. [Google Scholar] [CrossRef]
- Das, O. Prediction of the natural frequencies of various beams using regression machine learning models. Sigma J. Eng. Nat. Sci. 2023, 41, 302–321. [Google Scholar] [CrossRef]
- Avcar, M.; Saplioglu, K. An Artificial Neural Network Application for Estimation of Natural Frequencies of Beams. Int. J. Adv. Comput. Sci. Appl. 2015, 6, 94–102. [Google Scholar] [CrossRef]
- Liu, J.; Yang, X. Learning to see the vibration: A neural network for vibration frequency prediction. Sensors 2018, 18, 2530. [Google Scholar] [CrossRef] [PubMed]
- van Delden, J.; Schultz, J.; Blech, C.; Langer, S.; Lüddecke, T. Learning to Predict Structural Vibrations. In Proceedings of the 38th Conference on Neural Information Processing Systems (NeurIPS 2024), Vancouver, BC, Canada, 10–15 December 2024. [Google Scholar]
- Timchenko, G.; Osetrov, A. Prediction of Natural Frequency of Composite Plates with Non-canonical Shape Using Convolutional Neural Networks. In 2020 IEEE KhPI Week on Advanced Technology, KhPI Week 2020—Conference Proceedings; IEEE: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Kallannavar, V.; Kattimani, S.; Soudagar, M.E.M.; Mujtaba, M.A.; Alshahrani, S.; Imran, M. Neural network-based prediction model to investigate the influence of temperature and moisture on vibration characteristics of skew laminated composite sandwich plates. Materials 2021, 14, 3170. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Y.; Wang, Y.; Islam, M.; Hwang, J.; Wang, Y.; Fan, Y. Concurrent prediction of metallic glasses’ global energy and internal structural heterogeneity by interpretable machine learning. Acta Mater. 2023, 259, 119281. [Google Scholar] [CrossRef]
- Sohail, Y.; Zhang, C.; Xue, D.; Zhang, J.; Zhang, D.; Gao, S.; Yang, Y.; Fan, X.; Zhang, H.; Liu, G.; et al. Machine-learning design of ductile FeNiCoAlTa alloys with high strength. Nature 2025, 643, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Nowacki, W. Dynamika Budowli; Państwowe Wydawnictwo Naukowe: Warszawa, Poland, 1966. [Google Scholar]
- Woźniak, C. Podstawy Dynamiki Ciał Odkształcalnych, 1st ed.; Państwowe Wydawnictwo Naukowe: Warszawa, Poland, 1969. [Google Scholar]
- Timoshenko, S.P.S.P.; Woinosky-Krieger, S. Theory of Plates and Shells, 2nd ed.; McGraw-Hill Book Company: New Yore, NY, USA, 1964. [Google Scholar]
- Ventsel, E.; Krauthammer, T. Thin Plates and Shells; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar] [CrossRef]
- Awrejcewicz, J.; Jemielita, G.; Kołakowski, Z.; Matysiak, S.J.; Nagórko, W.; Pietraszkiewicz, W.; Śniady, P.; Świtka, R.; Szafer, G.; Wągrowska, M.; et al. (Eds.) Mathematical Modelling and Analysis in Continuum Mechanics of Microstructured Media; Silesian University Press: Gliwice, Poland, 2010. [Google Scholar]
- Rakowski, G.; Kacprzyk, Z. Metoda Elementów Skończonych w Mechanice Konstrukcji (Finite Element Method in Structural Mechanics), 3rd ed.; Państwowe Wydawnictwo Naukowe: Warszawa, Poland, 2015. [Google Scholar]
- Greco, A.; D’Urso, D.; Cannizzaro, F.; Pluchino, A. Damage identification on spatial Timoshenko arches by means of genetic algorithms. Mech. Syst. Signal Process. 2018, 105, 51–67. [Google Scholar] [CrossRef]
- Shibu, K.J.; Shankar, K.; Babu, C.K.; Degaonkar, G.K. Multi-objective optimum design of an aero engine rotor system using hybrid genetic algorithm. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019. [Google Scholar] [CrossRef]
- Francis, J.G.F. The QR Transformation A Unitary Analogue to the LR Transformation—Part 1. Comput. J. 1961, 4, 265–271. [Google Scholar] [CrossRef]
- Francis, J.G.F. The QR Transformation—Part 2. Comput. J. 1962, 4, 332–345. [Google Scholar] [CrossRef]
- Goldberg, D. Genetic Algorithms in Search, Optimization and Machine Learning; Addison Wesley: Reading, MA, USA, 1989. [Google Scholar] [CrossRef]
- Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar] [CrossRef]
- Domagalski, Ł.; Kowalczyk, I. Optimization and Analysis of Plates with a Variable Stiffness Distribution in Terms of Dynamic Properties. Materials 2025, 18, 2150. [Google Scholar] [CrossRef]
- Bolikulov, F.; Nasimov, R.; Rashidov, A.; Akhmedov, F.; Cho, Y.-I. Effective Methods of Categorical Data Encoding for Artificial Intelligence Algorithms. Mathematics 2024, 12, 2553. [Google Scholar] [CrossRef]








| ns | Overall | SSSS | CCCC | CFFF | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MAE | MAPE | MSE | R2 | MAE | MAPE | MSE | R2 | MAE | MAPE | MSE | R2 | MAE | MAPE | MSE | R2 | |
| 500 | 18.171 | 0.331 | 40.334 | 0.843 | 15.008 | 0.105 | 34.914 | 0.744 | 30.88 | 0.147 | 58.299 | 0.764 | 7.806 | 0.789 | 12.000 | 0.674 |
| 1500 | 4.283 | 0.080 | 6.631 | 0.995 | 4.401 | 0.047 | 6.815 | 0.989 | 5.772 | 0.041 | 8.198 | 0.994 | 2.268 | 0.169 | 3.425 | 0.976 |
| 3000 | 3.904 | 0.143 | 5.383 | 0.997 | 4.402 | 0.056 | 6.088 | 0.990 | 4.492 | 0.031 | 5.995 | 0.997 | 2.780 | 0.351 | 3.679 | 0.970 |
| 6000 | 1.642 | 0.059 | 2.509 | 0.999 | 1.518 | 0.020 | 2.173 | 0.999 | 2.317 | 0.016 | 3.448 | 0.999 | 1.119 | 0.142 | 1.591 | 0.993 |
| 9000 | 1.592 | 0.062 | 2.327 | 0.999 | 1.466 | 0.019 | 2.055 | 0.999 | 2.114 | 0.016 | 2.978 | 0.999 | 1.163 | 0.151 | 1.703 | 0.993 |
| 18,000 | 3.988 | 0.115 | 5.592 | 0.997 | 4.196 | 0.043 | 6.076 | 0.993 | 4.956 | 0.033 | 6.464 | 0.997 | 2.874 | 0.264 | 3.973 | 0.976 |
| f | Overall | SSSS | CCCC | CFFF | ||||
|---|---|---|---|---|---|---|---|---|
| MAPE | R2 | MAPE | R2 | MAPE | R2 | MAPE | R2 | |
| f1 | 0.1286 | 0.9989 | 0.0274 | 0.9976 | 0.0200 | 0.9987 | 0.3346 | 0.9870 |
| f2 | 0.0298 | 0.9994 | 0.0147 | 0.9994 | 0.0143 | 0.9991 | 0.0598 | 0.9951 |
| f3 | 0.0285 | 0.9996 | 0.0139 | 0.9996 | 0.0127 | 0.9996 | 0.0584 | 0.9978 |
| Boundary Conditions | Lx | Overall | bc | bc + len |
|---|---|---|---|---|
| SSSS | 0.5 | 0.0589 | 0.0199 | 0.0131 |
| 1.0 | 0.0170 | |||
| 1.5 | 0.0180 | |||
| 2.0 | 0.0176 | |||
| 2.5 | 0.0225 | |||
| 3.0 | 0.0305 | |||
| CCCC | 0.5 | 0.0589 | 0.0160 | 0.0120 |
| 1.0 | 0.0174 | |||
| 1.5 | 0.0170 | |||
| 2.0 | 0.0170 | |||
| 2.5 | 0.0153 | |||
| 3.0 | 0.0192 | |||
| CFFF | 0.5 | 0.0589 | 0.1416 | 0.0404 |
| 1.0 | 0.0572 | |||
| 1.5 | 0.1026 | |||
| 2.0 | 0.1395 | |||
| 2.5 | 0.2081 | |||
| 3.0 | 0.2995 |
| ns | CFFF | |||
|---|---|---|---|---|
| MAE | MAPE | MSE | R2 | |
| 500 | 3.236 | 0.119 | 6.411 | 0.945 |
| 1500 | 1.131 | 0.055 | 2.005 | 0.992 |
| 3000 | 2.711 | 0.088 | 5.198 | 0.959 |
| 6000 | 0.637 | 0.040 | 1.224 | 0.996 |
| 9000 | 0.411 | 0.030 | 0.714 | 0.999 |
| 18,000 | 0.570 | 0.028 | 1.058 | 0.998 |
| f | CFFF | |
|---|---|---|
| MAPE | R2 | |
| f1 | 0.0517 | 0.9986 |
| f2 | 0.0208 | 0.9988 |
| f3 | 0.0185 | 0.9997 |
| Lx | MAPE |
|---|---|
| 0.5 | 0.0165 |
| 1.0 | 0.0211 |
| 1.5 | 0.0227 |
| 2.0 | 0.0283 |
| 2.5 | 0.0371 |
| 3.0 | 0.0553 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Domagalski, Ł.; Kowalczyk, I. Application of Machine Learning Models in Predicting Vibration Frequencies of Thin Variable Thickness Plates. Materials 2026, 19, 205. https://doi.org/10.3390/ma19010205
Domagalski Ł, Kowalczyk I. Application of Machine Learning Models in Predicting Vibration Frequencies of Thin Variable Thickness Plates. Materials. 2026; 19(1):205. https://doi.org/10.3390/ma19010205
Chicago/Turabian StyleDomagalski, Łukasz, and Izabela Kowalczyk. 2026. "Application of Machine Learning Models in Predicting Vibration Frequencies of Thin Variable Thickness Plates" Materials 19, no. 1: 205. https://doi.org/10.3390/ma19010205
APA StyleDomagalski, Ł., & Kowalczyk, I. (2026). Application of Machine Learning Models in Predicting Vibration Frequencies of Thin Variable Thickness Plates. Materials, 19(1), 205. https://doi.org/10.3390/ma19010205

