Modeling the Dynamics of Electric Field-Assisted Local Functionalization in Two-Dimensional Materials
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Operating Framework for Obtaining Electrical Magnitudes
3.2. Electrostatic Results Around the Boundary Between Oxidized and Pristine Regions in Graphene
3.3. Formulation of the Expansion of the Oxidized Region over Time in Graphene
3.4. Expansion of the Oxidized Region over Time in Transition Metal Dichalcogenide 2D Layers at the Nanoscale
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| LAO | Local anodic oxidation |
| FET | Field effect transistor |
| MOCVD | Metalorganic chemical vapor deposition |
| RH | Relative humidity |
| TMD | Transition metal dichalcogenide |
References
- Illarionov, Y.; Lv, Y.Z.; Wu, Y.H.; Chai, Y.J. LAB-to-FAB Transition of 2D FETs: Available Strategies and Future Trends. Nanomaterials 2024, 14, 1237. [Google Scholar] [CrossRef] [PubMed]
- Yin, T.; Xu, L.; Gil, B.; Merali, N.; Sokolikova, M.S.; Gaboriau, D.C.A.; Liu, D.S.K.; Mustafa, A.N.M.; Alodan, S.; Chen, M.; et al. Graphene Sensor Arrays for Rapid and Accurate Detection of Pancreatic Cancer Exosomes in Patients’ Blood Plasma Samples. ACS Nano 2023, 17, 14619–14631. [Google Scholar] [CrossRef]
- Yu, J.; Suleiman, A.A.; Shi, J.W.; Ong, R.J.; Ling, F.C.-C.; Zhang, W. Recent Advances in Atomic Force Microscopy-Based Local Anodic Oxidation Nanolithography of 2D Materials. Adv. Mater. Interfaces 2025, 12, 2500137. [Google Scholar] [CrossRef]
- Cabrera, N.; Mott, N.F. Theory of the oxidation of metals. Rep. Prog. Phys. 1949, 12, 163. [Google Scholar] [CrossRef]
- Verwey, E.J.W. Electrolytic conduction of a solid insulator at high fields. The formation of the anodic oxide film on aluminum. Physica 1935, 2, 1059–1063. [Google Scholar] [CrossRef]
- Dewald, J.F. Theory of the Kinetics of Formation of Anode Films at High Fields. J. Electrochem. Soc. 1955, 102, 1. [Google Scholar] [CrossRef]
- Fromhold, A.T., Jr. Space Charge in Growing Oxide Films. IV. Rate Effects Deduced by an Averaging Technique. J. Chem. Phys. 1964, 40, 3335–3343. [Google Scholar] [CrossRef]
- Dubois, E.; Bubendorff, J.L. Kinetics of scanned probe oxidation: Space-charge limited growth. J. App. Phys. 2000, 87, 8148–8154. [Google Scholar] [CrossRef]
- Dagata, J.A.; Inoue, T.; Itoh, J.; Matsumoto, K.; Yokoyama, H. Role of space charge in scanned probe oxidation. J. Appl. Phys. 1998, 84, 6891–6900. [Google Scholar] [CrossRef]
- Avouris, P.; Hertel, T.; Martel, R. Atomic force microscope tip-induced local oxidation of silicon: Kinetics, mechanism, and nanofabrication. Appl. Phys. Lett. 1997, 71, 285–287. [Google Scholar] [CrossRef]
- Calleja, M.; Tello, M.; García, R. Size determination of field-induced water menisci in noncontact atomic force microscopy. J. Appl. Phys. 2002, 92, 5539–5542. [Google Scholar] [CrossRef]
- Ryu, Y.K.; Garcia, R. Advanced oxidation scanning probe lithography. Nanotechnology 2017, 28, 142003. [Google Scholar] [CrossRef]
- Garcia, R.; Martinez, R.V.; Martinez, J. Nano-chemistry and scanning probe nanolithographies. Chem. Soc. Rev. 2006, 35, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Ryu, Y.K.; Postigo, P.A.; Garcia, F.; Garcia, R. Fabrication of sub-12 nm thick silicon nanowires by processing scanning probe lithography masks. Appl. Phys. Lett. 2014, 104, 223112. [Google Scholar] [CrossRef]
- Borodin, B.R.; Benimetskiy, F.A.; Alekseev, P.A. Study of local anodic oxidation regimes in MoSe2. Nanotechnology 2021, 32, 155304. [Google Scholar] [CrossRef]
- Lin, J.F.; Tai, C.K.; Lin, S.L. Theoretical and experimental studies for nano-oxidation of silicon wafer by ac atomic force microscopy. J. Appl. Phys. 2006, 99, 054312. [Google Scholar] [CrossRef]
- Garcia-Martin, A.; Garcia, R. Formation of nanoscale liquid menisci in electric fields. Appl. Phys. Lett. 2006, 88, 123115. [Google Scholar] [CrossRef]
- Fan, P.; Gao, J.; Mao, H.; Geng, Y.; Yan, Y.; Wang, Y.; Goel, S.; Luo, X. Scanning Probe Lithography: State of-the-Art and Future Perspectives. Micromachines 2022, 13, 228. [Google Scholar] [CrossRef]
- Snow, E.S.; Jernigan, G.G.; Campbell, P.M. The kinetics and mechanism of scanned probe oxidation of Si. Appl. Phys. Lett. 2000, 76, 1782–1784. [Google Scholar] [CrossRef]
- Kinser, C.R.; Schmitz, M.J.; Hersam, M.C. Kinetics and Mechanism of Atomic Force Microscope Local Oxidation on Hydrogen-Passivated Silicon in Inert Organic Solvents. Adv. Mater. 2006, 18, 1377–1380. [Google Scholar] [CrossRef]
- Dagata, J.A.; Perez-Murano, F.; Abadal, G.; Morimoto, K.; Inoue, T.; Itoh, J.; Yokoyama, H. Predictive model for scanned probe oxidation kinetics. Appl. Phys. Lett. 2000, 76, 2710–2712. [Google Scholar] [CrossRef]
- Kuramochi, H.; Pérez-Murano, F.; Dagata, J.A.; Yokoyama, H. Faradaic current detection during anodic oxidation of the H-passivated p-Si(001) surface with controlled relative humidity. Nanotechnology 2004, 15, 297. [Google Scholar] [CrossRef]
- Kuramochi, H.; Ando, K.; Yokoyama, H. Effect of humidity on nano-oxidation of p-Si(0 0 1) surface. Surf. Sci. 2003, 542, 56–63. [Google Scholar] [CrossRef]
- Filipovic, L.; Selberherr, S. A method for simulating Atomic Force Microscope nanolithography in the Level Set framework. Microelectron. Eng. 2013, 107, 23–32. [Google Scholar] [CrossRef]
- Dagata, J.A.; Perez-Murano, F.; Martin, C.; Kuramochi, H.; Yokoyama, H. Current, charge, and capacitance during scanning probe oxidation of silicon. I. Maximum charge density and lateral difusión. J. Appl. Phys. 2004, 96, 2386–2392. [Google Scholar] [CrossRef]
- Calleja, M.; García, R. Nano-oxidation of silicon surfaces by noncontact atomic-force microscopy: Size dependence on voltage and pulse duration. Appl. Phys. Lett. 2000, 76, 3427–3429. [Google Scholar] [CrossRef]
- Luo, X.; Gao, J.; Xie, W.; Hasan, R.M.M.; Qin, Y. Flexible single-step fabrication of programmable 3D nanostructures by pulse-modulated local anodic oxidation. CIRP Ann. 2023, 72, 177–180. [Google Scholar] [CrossRef]
- Quesada, S.J.; Borrás, F.; García-Vélez, M.; Coya, C.; Climent, E.; Munuera, C.; Villar, I.; de la Peña O’Shea, V.A.; de Andrés, A.; Alvarez, A.L. New Concepts for Production of Scalable Single Layer Oxidized Regions by Local Anodic Oxidation of Graphene. Small 2019, 15, 1902817. [Google Scholar] [CrossRef]
- Alvarez, A.L.; Coya, C.; García-Vélez, M. Development of electrical-erosion instrument for direct write micropatterning on large area conductive thin films. Rev. Sci. Instrum. 2015, 86, 084704. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef] [PubMed]
- COMSOL Multiphysics®, v. 4.4. COMSOL AB: Stockholm, Sweden. Available online: https://www.comsol.com (accessed on 4 November 2025).
- García, R.; Calleja, M.; Pérez-Murano, F. Local oxidation of silicon surfaces by dynamic force microscopy: Nanofabrication and water bridge formation. Appl. Phys. Lett. 1998, 72, 2295–2297. [Google Scholar] [CrossRef]
- Gomer, R. Extensions of the Field-Emission Fluctuation Method for the Determination of Surface Diffusion Coefficients. Appl. Phys. A. 1986, 39, 1–8. [Google Scholar] [CrossRef]
- Bartošík, M.; Škoda, D.; Tomanec, O.; Kalousek, R.; Jánský, P.; Zlámal, J.; Spousta, J.; Dub, P.; Šikola, T. Role of humidity in local anodic oxidation: A study of water condensation and electric field distribution. Phys. Rev. B 2009, 79, 195406. [Google Scholar] [CrossRef]
- Cudazzo, P.; Tokatly, I.V.; Rubio, A. Dielectric screening in two-dimensional insulators: Implications for excitonic and impurity states in graphene. Phys. Rev. B 2011, 84, 08540. [Google Scholar] [CrossRef]
- Keldysh, L.V. Coulomb interaction in thin semiconductor and semimetal films. J. Exp. Theor. Phys. Lett. 1979, 29, 658. [Google Scholar]
- Yao, Y.; Ren, L.; Gao, S.; Li, S. Histogram method for reliable thickness measurements of Graphene films using atomic force microscopy (AFM). J. Mater. Sci. Technol. 2017, 33, 815–820. [Google Scholar] [CrossRef]
- Shearer, C.J.; Slattery, A.D.; Stapleton, A.J.; Shapter, J.G.; Gibson, C.T. Accurate thickness measurement of Graphene. Nanotechnology 2016, 27, 125704. [Google Scholar] [CrossRef]
- Bu, T.; Gao, H.; Yao, Y.; Wang, J.; Pollard, A.J.; Legge, E.J.; Clifford, C.A.; Delvallée, A.; Ducourtieux, S.; Lawn, M.A.; et al. Thickness measurements of graphene oxide flakes using atomic force microscopy: Results of an international interlaboratory comparison. Nanotechnology 2023, 34, 225702. [Google Scholar] [CrossRef]
- Jaejun Park, J.; Lee, W.; Nam, J.; Han, J.T.; Choi, C.-J.; Hwang, J.Y. A study of the correlation between the oxidation degree and thickness of graphene oxides. Carbon 2022, 189, 579–585. [Google Scholar] [CrossRef]
- Cowie, M.; Plougmann, R.; Benkirane, Y.; Schué, L.; Schumacher, Z.; Grütter, P. How high is a MoSe2 monolayer? Nanotechnology 2022, 33, 125706. [Google Scholar] [CrossRef]
- Ryu, Y.K.; Dago, A.I.; He, Y.; Espinosa, F.M.; Lopez-Elvira, E.; Munuera, C.; Garcia, R. Sub-10 nm patterning of few-layer MoS2 and MoSe2 nanolectronic devices by oxidation scanning probe lithography. Appl. Surf. Sci. 2021, 539, 148231. [Google Scholar] [CrossRef]
- Gao, W.; Xiao, P.; Henkelman, G.; Liechti, K.M.; Huang, R. Interfacial adhesion between graphene and silicon dioxide by density functional theory with van der Waals corrections. J. Phys. D Appl. Phys. 2014, 47, 255301. [Google Scholar] [CrossRef]
- Properties of the Commercial Graphene Layers Transferred onto Quartz Used Here. Available online: https://www.graphenea.com/collections/buy-graphene-films/products/monolayer-graphene-on-quartz-4-wafer?variant=51790150035 (accessed on 6 November 2025).
- Liu, J.; Galpaya, D.; Notarianni, M.; Yan, C.; Motta, N. Graphene-based thin film supercapacitor with graphene oxide as dielectric spacer. Appl. Phys. Lett. 2013, 103, 063108. [Google Scholar] [CrossRef]
- Kumar, K.S.; Pittala, S.; Sanyadanam, S.; Paik, P. A new single/few-layered graphene oxide with a high dielectric constant of 1e6: Contribution of defects and functional groups. RSC Adv. 2015, 5, 14768–14779. [Google Scholar] [CrossRef]
- Ugeda, M.M.; Bradley, A.J.; Shi, S.-F.; da Jornada, F.H.; Zhang, Y.; Qiu, D.Y.; Ruan, W.; Mo, S.-K.; Hussain, Z.; Shen, Z.-X.; et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 2014, 13, 1091–1095. [Google Scholar] [CrossRef]
- Qiu, C.; Zhang, C.; Geng, S.; Wang, F.; Deng, H.X. First-Principles Study of the Origin of the Distinct Conductivity Type of Monolayer MoSe2 and WSe2. J. Phys. Chem. C 2022, 126, 16539–16545. [Google Scholar] [CrossRef]
- Jin, Y.; Keum, D.H.; An, S.J.; Kim, J.; Lee, H.S.; Lee, Y.H. A Van Der Waals Homojunction: Ideal p–n Diode Behavior in MoSe2. Adv. Mater. 2015, 27, 5534–5540. [Google Scholar] [CrossRef] [PubMed]
- Afanasiev, P.; Lorentz, C. Oxidation of Nanodispersed MoS2 in Ambient Air: The Products and the Mechanistic Steps. J. Phys. Chem. C 2019, 123, 7486–7494. [Google Scholar] [CrossRef]
- Díez-Betriu, X.; Álvarez-García, S.; Botas, C.; Álvarez, P.; Sánchez-Marcos, J.; Prieto, C.; Menéndez, R.; de Andrés, A. Raman spectroscopy for the study of reduction mechanisms and optimization of conductivity in graphene oxide thin films. J. Mater. Chem. C 2013, 1, 6905–6912. [Google Scholar] [CrossRef]
- Alkhouzaama, A.; Qiblaweya, H.; Khraisheha, M.; Atiehb, M.; Al-Ghouti, M. Synthesis of graphene oxides particle of high oxidation degree using a modified Hummers method. Ceram. Int. 2020, 46, 23997–24007. [Google Scholar] [CrossRef]
- Hong, S.; Im, H.; Hong, Y.K.; Liu, N.; Kim, S.; Park, J.H. n-Type Doping Effect of CVD-Grown Multilayer MoSe2 Thin Film Transistors by Two-Step Functionalization. Adv. Electron. Mater. 2018, 4, 1800308. [Google Scholar] [CrossRef]
- Kang, S.; Khan, H.; Lee, C.; Kwon, K.; Lee, C.S. Investigation of hydrophobic MoSe2 grown at edge sites on TiO2 nanofibers for photocatalytic CO2 reduction. Chem. Eng. J. 2021, 420, 130496. [Google Scholar] [CrossRef]
- Uhlig, M.R.; Martin-Jimenez, D.; Garcia, R. Atomic-scale mapping of hydrophobic layers on graphene and few-layer MoS2 and WSe2 in water. Nat. Commun. 2019, 10, 2606. [Google Scholar] [CrossRef]
- Ramos-Alvarado, B.; Kumar, S.; Peterson, G.P. On the wettability transparency of graphene-coated silicon surfaces. J. Chem. Phys. 2016, 144, 014701. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.Y.; Kim, S.; Kim, Y.; Park, M.; Son, M.G.; Ma, J.Y.; Park, Y.M.; Kim, J.H.; Kang, H.; Kim, J.; et al. Wetting Transparency-Induced Enhancement of Moisture Stability in Monolayer Transition Metal Dichalcogenides. Small 2025, 21, e05784. [Google Scholar] [CrossRef] [PubMed]
- Ryu, Y.K.; Knoll, A.W. Oxidation and Thermal Scanning Probe Lithography for High-Resolution Nanopatterning and Nanodevices. In Electrical Atomic Force Microscopy for Nanoelectronics; Celano, U., Ed.; Springer: Cham, Switzerland, 2019; pp. 143–172. [Google Scholar]
- Sygellou, L.; Paterakis, G.; Galiotis, C.; Tasis, D. Work Function Tuning of Reduced Graphene Oxide Thin Films. J. Phys. Chem. C 2016, 120, 281–290. [Google Scholar] [CrossRef]








| Authors and Refs. | Expression |
|---|---|
| Dubois et al. [8] | w(t, V) = V/V0 (t/t0)α (“power-of-time law”) parameters V0, t0 and α |
| Calleja et al. [26] | w(t,V) = w0(V) + w1(V) ln t (“direct-log form”) w0 and w1, linearly dependent on V |
| Dagata et al. [25] | w (t,V) = 2 r0 + 3 V ln(t/τ + 1) + 1.5V2 t0.5, parameters r0 and τ |
| Filipovic et al. [24] | w(t,V) = w0(V) + w1(V) (ln t)·f(RH) w0 and w1 linearly dependent on V, and f(RH) linearly dependent on relative humidity (RH) |
| Borodin et al. [15] | Parameters D0, R, Deff, t0, α |
| Thin Film Thickness (nm) | Oxide Thickness (nm) | Band Gap (eV) | Doping in the Model (cm − 3) | Range of Oxide Relative Permittivity Used | |
|---|---|---|---|---|---|
| Graphene | 1 | 2 | 0.020 a | [p] = 1020 b | (102 − 105) c |
| MoSe2 | 20 (flake) d | 3 | 2.18 e | [n] = 1018 f | (20 − 104) g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Borrás, F.; Ramiro-Bargueño, J.; Casanova-Carvajal, Ó.; de Andrés, A.; Quesada, S.J.; Álvarez, Á.L. Modeling the Dynamics of Electric Field-Assisted Local Functionalization in Two-Dimensional Materials. Materials 2026, 19, 204. https://doi.org/10.3390/ma19010204
Borrás F, Ramiro-Bargueño J, Casanova-Carvajal Ó, de Andrés A, Quesada SJ, Álvarez ÁL. Modeling the Dynamics of Electric Field-Assisted Local Functionalization in Two-Dimensional Materials. Materials. 2026; 19(1):204. https://doi.org/10.3390/ma19010204
Chicago/Turabian StyleBorrás, Fernando, Julio Ramiro-Bargueño, Óscar Casanova-Carvajal, Alicia de Andrés, Sergio J. Quesada, and Ángel Luis Álvarez. 2026. "Modeling the Dynamics of Electric Field-Assisted Local Functionalization in Two-Dimensional Materials" Materials 19, no. 1: 204. https://doi.org/10.3390/ma19010204
APA StyleBorrás, F., Ramiro-Bargueño, J., Casanova-Carvajal, Ó., de Andrés, A., Quesada, S. J., & Álvarez, Á. L. (2026). Modeling the Dynamics of Electric Field-Assisted Local Functionalization in Two-Dimensional Materials. Materials, 19(1), 204. https://doi.org/10.3390/ma19010204

