Diatom-Inspired Design: A New Ru-Based Photosystem for Efficient Oxygen Evolution
Abstract
1. Introduction
2. Materials
3. Methods
3.1. Synthesis of Ru(bpy)2(bda) (PS)
3.2. Synthesis of 2,2′-Bipyridine-6,6′-dicarboxylate
3.3. Synthesis of Ru(bda)(cp)2 (Cat)
3.4. Functionalization of DE with Photocatalyst and Photosensitizer
3.5. UV-Vis Spectroscopy
3.6. ATR-FTIR
3.7. SEM-EDX
3.8. Electrochemical Measurements
3.9. Photocatalytic Oxygen Evolution
4. Results and Discussion
4.1. UV-Vis Spectroscopy
4.2. ATR-FTIR
4.3. SEM-EDX
4.4. Electrochemical Measurements
4.5. Photocatalytic Oxygen Evolution
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lazzarini, A.; Colaiezzi, R.; Gabriele, F.; Crucianelli, M. Support–Activity Relationship in Heterogeneous Catalysis for Biomass Valorization and Fine-Chemicals Production. Materials 2021, 14, 6796. [Google Scholar] [CrossRef] [PubMed]
- Do Prado, M.V.; González, B.; Vicente, M.A.; Trujillano, R.; Nassar, E.J.; Gil, A.; Santamaría, L.; Korili, S.A.; Marçal, L.; De Faria, E.H.; et al. Multifunctional Heterogeneous Catalysts: Tetrakis(Pentafluorophenyl)Porphinato]Iron(III) Immobilized on Amine–Functionalized Diatomaceous Earth for Catalytic and Adsorption Applications. J. Environ. Chem. Eng. 2023, 11, 109729. [Google Scholar] [CrossRef]
- Rothenberg, G. Catalysis: Concepts and Green Applications; John Wiley & Sons: Hoboken, NJ, USA, 2017; ISBN 978-3-527-34305-8. [Google Scholar]
- Yao, Y.; Liu, X.; Hu, H.; Tang, Y.; Hu, H.; Ma, Z.; Wang, S. Synthesis and Characterization of Iron-Nitrogen-Doped Biochar Catalysts for Organic Pollutant Removal and Hexavalent Chromium Reduction. J. Colloid Interface Sci. 2022, 610, 334–346. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Tang, J.; Qian, H.; Wang, Z.; Yamauchi, Y. One-Pot Synthesis of Zeolitic Imidazolate Framework 67-Derived Hollow Co3 S4 @MoS2 Heterostructures as Efficient Bifunctional Catalysts. Chem. Mater. 2017, 29, 5566–5573. [Google Scholar] [CrossRef]
- Nagendrappa, G.; Chowreddy, R.R. Organic Reactions Using Clay and Clay-Supported Catalysts: A Survey of Recent Literature. Catal. Surv. Asia 2021, 25, 231–278. [Google Scholar] [CrossRef]
- Liang, J.; Liang, Z.; Zou, R.; Zhao, Y. Heterogeneous Catalysis in Zeolites, Mesoporous Silica, and Metal–Organic Frameworks. Adv. Mater. 2017, 29, 1701139. [Google Scholar] [CrossRef]
- Jung, C. The Mystery of Cytochrome P450 Compound I: A Mini-Review Dedicated to Klaus Ruckpaul. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2011, 1814, 46–57. [Google Scholar] [CrossRef]
- McConnell, I.; Li, G.; Brudvig, G.W. Energy Conversion in Natural and Artificial Photosynthesis. Chem. Biol. 2010, 17, 434–447. [Google Scholar] [CrossRef]
- Amunts, A.; Drory, O.; Nelson, N. The Structure of a Plant Photosystem I Supercomplex at 3.4 Å Resolution. Nature 2007, 447, 58–63. [Google Scholar] [CrossRef]
- Umena, Y.; Kawakami, K.; Shen, J.-R.; Kamiya, N. Crystal Structure of Oxygen-Evolving Photosystem II at a Resolution of 1.9 Å. Nature 2011, 473, 55–60. [Google Scholar] [CrossRef]
- Zhang, B.; Sun, L. Artificial Photosynthesis: Opportunities and Challenges of Molecular Catalysts. Chem. Soc. Rev. 2019, 48, 2216–2264. [Google Scholar] [CrossRef]
- Dau, H.; Fujita, E.; Sun, L. Artificial Photosynthesis: Beyond Mimicking Nature. ChemSusChem 2017, 10, 4228–4235. [Google Scholar] [CrossRef] [PubMed]
- Ielo, I.; Cancelliere, A.M.; Arrigo, A.; La Ganga, G. Metal-Based Chromophores for Photochemical Water Oxidation. In Photochemistry; Royal Society of Chemistry: London, UK, 2023. [Google Scholar] [CrossRef]
- Amadeo, A.; Mazza, E.L.; Arrigo, A.; La Ganga, G.; Cancelliere, A.M. Multinuclear Systems for Photo-Induced Production of Green Fuels: An Overview of Homogeneous Catalysts Based on Transition Metals. Sustain. Energy Fuels 2024, 8, 1588–1606. [Google Scholar] [CrossRef]
- Cancelliere, A.M.; Arrigo, A.; Galletta, M.; Nastasi, F.; Campagna, S.; La Ganga, G. Photo-Driven Water Oxidation Performed by Supramolecular Photocatalysts Made of Ru(II) Photosensitizers and Catalysts. J. Chem. Phys. 2024, 160, 084709. [Google Scholar] [CrossRef] [PubMed]
- Giannetto, A.; Puntoriero, F.; Notti, A.; Parisi, M.F.; Ielo, I.; Nastasi, F.; Bruno, G.; Campagna, S.; Lanza, S. Self-Assembly of Hexameric Macrocycles from PtII/Ferrocene Dimetallic Subunits—Synthesis, Characterization, Chemical Reactivity, and Oxidation Behavior. Eur. J. Inorg. Chem. 2015, 2015, 5730–5742. [Google Scholar] [CrossRef]
- Barbante, G.J.; Ashton, T.D.; Doeven, E.H.; Pfeffer, F.M.; Wilson, D.J.D.; Henderson, L.C.; Francis, P.S. Photoredox Catalysis of Intramolecular Cyclizations with a Reusable Silica-Bound Ruthenium Complex. ChemCatChem 2015, 7, 1655–1658. [Google Scholar] [CrossRef]
- Ogino, I.; Gates, B.C. Role of the Support in Catalysis: Activation of a Mononuclear Ruthenium Complex for Ethene Dimerization by Chemisorption on Dealuminated Zeolite Y. Chem.—Eur. J. 2009, 15, 6827–6837. [Google Scholar] [CrossRef]
- Tang, J.-H.; Han, G.; Li, G.; Yan, K.; Sun, Y. Near-Infrared Light Photocatalysis Enabled by a Ruthenium Complex-Integrated Metal–Organic Framework via Two-Photon Absorption. iScience 2022, 25, 104064. [Google Scholar] [CrossRef]
- Sindhuja, D.; Gopiraman, M.; Vasanthakumar, P.; Bhuvanesh, N.; Karvembu, R. Ruthenium−p-Cymene Complexes with Acylthiourea, and Its Heterogenized Form on Graphene Oxide Act as Catalysts for the Synthesis of Quinoxaline Derivatives. J. Organomet. Chem. 2021, 949, 121933. [Google Scholar] [CrossRef]
- Cho, K.-H.; Chakraborty, D.; Cho, E.-B.; Jung, S.Y.; Han, H. Newly Design and Synthesis of Ni–Ir–Ru-Doped Mesoporous Silica Open-Frameworks for Admirable Electrochemical Water-Oxidation Application. Int. J. Hydrogen Energy 2024, 51, 733–747. [Google Scholar] [CrossRef]
- Zhang, Y.; Judkins, E.C.; McMillin, D.R.; Mehta, D.; Ren, T. Mesoporous Silica-Supported Ruthenium Oxide Nanoparticulates as Efficient Catalysts for Photoinduced Water Oxidation. ACS Catal. 2013, 3, 2474–2478. [Google Scholar] [CrossRef]
- Köhler, L.; Machill, S.; Werner, A.; Selzer, C.; Kaskel, S.; Brunner, E. Are Diatoms “Green” Aluminosilicate Synthesis Microreactors for Future Catalyst Production? Molecules 2017, 22, 2232. [Google Scholar] [CrossRef] [PubMed]
- Fowler, C.E.; Buchber, C.; Lebeau, B.; Patarin, J.; Delacôte, C.; Walcarius, A. An Aqueous Route to Organically Functionalized Silica Diatom Skeletons. Appl. Surf. Sci. 2007, 253, 5485–5493. [Google Scholar] [CrossRef]
- Yu, Y.; Addai-Mensah, J.; Losic, D. Functionalized Diatom Silica Microparticles for Removal of Mercury Ions. Sci. Technol. Adv. Mater. 2012, 13, 015008. [Google Scholar] [CrossRef] [PubMed]
- Nassif, N.; Livage, J. From Diatoms to Silica-Based Biohybrids. Chem. Soc. Rev. 2011, 40, 849–859. [Google Scholar] [CrossRef]
- Perera, H.J.; Goyal, A.; Banu, H.; Alhassan, S.M. Enhanced Oil-Spill Removal and Recovery from Water Bodies Using Diatomaceous Earth and C18-Silane Grafted Polyurethane. Emergent Mater. 2022, 6, 499–509. [Google Scholar] [CrossRef]
- Khraisheh, M.A.M.; Al-Ghouti, M.A.; Allen, S.J.; Ahmad, M.N. Effect of OH and Silanol Groups in the Removal of Dyes from Aqueous Solution Using Diatomite. Water Res. 2005, 39, 922–932. [Google Scholar] [CrossRef]
- Cicco, S.R.; Vona, D.; Gristina, R.; Sardella, E.; Ragni, R.; Lo Presti, M.; Farinola, G.M. Biosilica from Living Diatoms: Investigations on Biocompatibility of Bare and Chemically Modified Thalassiosira Weissflogii Silica Shells. Bioengineering 2016, 3, 35. [Google Scholar] [CrossRef]
- Bariana, M.; Aw, M.S.; Losic, D. Tailoring Morphological and Interfacial Properties of Diatom Silica Microparticles for Drug Delivery Applications. Adv. Powder Technol. 2013, 24, 757–763. [Google Scholar] [CrossRef]
- Li, B.; Li, F.; Bai, S.; Wang, Z.; Sun, L.; Yang, Q.; Li, C. Oxygen Evolution from Water Oxidation on Molecular Catalysts Confined in the Nanocages of Mesoporous Silicas. Energy Environ. Sci. 2012, 5, 8229–8233. [Google Scholar] [CrossRef]
- Huttenloch, P.; Roehl, K.E.; Czurda, K. Sorption of Nonpolar Aromatic Contaminants by Chlorosilane Surface Modified Natural Minerals. Environ. Sci. Technol. 2001, 35, 4260–4264. [Google Scholar] [CrossRef] [PubMed]
- Rabiee, N.; Khatami, M.; Jamalipour Soufi, G.; Fatahi, Y.; Iravani, S.; Varma, R.S. Diatoms with Invaluable Applications in Nanotechnology, Biotechnology, and Biomedicine: Recent Advances. ACS Biomater. Sci. Eng. 2021, 7, 3053–3068. [Google Scholar] [CrossRef] [PubMed]
- Beauvilliers, E.E.; Meyer, G.J. Evidence for Cation-Controlled Excited-State Localization in a Ruthenium Polypyridyl Compound. Inorg. Chem. 2016, 55, 7517–7526. [Google Scholar] [CrossRef] [PubMed]
- Vidal, A.; Adamo, F.; Iengo, E.; Alessio, E. Models of Molecular Photocatalysts for Water Oxidation: Strategies for Conjugating the Ru(Bda) Fragment (Bda = 2,2′-Bipyridine-6,6′-Dicarboxylate) to Porphyrin Photosensitizers. Inorganica Chim. Acta 2021, 516, 120143. [Google Scholar] [CrossRef]
- Kirsanov, D.O.; Borisova, N.E.; Reshetova, M.D.; Ivanov, A.V.; Korotkov, L.A.; Eliseev, I.I.; Alyapyshev, M.Y.; Spiridonov, I.G.; Legin, A.V.; Vlasov, Y.G.; et al. Novel Diamides of 2,2′-Dipyridyl-6,6′-Dicarboxylic Acid: Synthesis, Coordination Properties, and Possibilities of Use in Electrochemical Sensors and Liquid Extraction. Russ. Chem. Bull. 2012, 61, 881–890. [Google Scholar] [CrossRef]
- Sun, L.; Hammarström, L.; Åkermark, B.; Styring, S. Towards Artificial Photosynthesis: Ruthenium–Manganese Chemistry for Energy Production. Chem. Soc. Rev. 2001, 30, 36–49. [Google Scholar] [CrossRef]
- Barigelletti, F.; Flamigni, L. Photoactive Molecular Wires Based on Metalcomplexes. Chem. Soc. Rev. 2000, 29, 1–12. [Google Scholar] [CrossRef]
- Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; von Zelewsky, A. Ru(II) Polypyridine Complexes: Photophysics, Photochemistry, Eletrochemistry, and Chemiluminescence. Coord. Chem. Rev. 1988, 84, 85–277. [Google Scholar] [CrossRef]
- Sauvage, J.P.; Collin, J.P.; Chambron, J.C.; Guillerez, S.; Coudret, C.; Balzani, V.; Barigelletti, F.; De Cola, L.; Flamigni, L. Ruthenium(II) and Osmium(II) Bis(Terpyridine) Complexes in Covalently-Linked Multicomponent Systems: Synthesis, Electrochemical Behavior, Absorption Spectra, and Photochemical and Photophysical Properties. Chem. Rev. 1994, 94, 993–1019. [Google Scholar] [CrossRef]
- Alexander, B.D.; Dines, T.J.; Longhurst, R.W. DFT Calculations of the Structures and Vibrational Spectra of the [Fe(Bpy)3]2+ and [Ru(Bpy)3]2+ Complexes. Chem. Phys. 2008, 352, 19–27. [Google Scholar] [CrossRef]
- Mallick, P.K.; Danzer, G.D.; Strommen, D.P.; Kincaid, J.R. Vibrational Spectra and Normal-Coordinate Analysis of Tris(Bipyridine)Ruthenium(II). J. Phys. Chem. 1988, 92, 5628–5634. [Google Scholar] [CrossRef]
- McCusker, C.E.; McCusker, J.K. Synthesis and Spectroscopic Characterization of CN-Substituted Bipyridyl Complexes of Ru(II). Inorg. Chem. 2011, 50, 1656–1669. [Google Scholar] [CrossRef]
- Begum, R.A.; Farah, A.A.; Hunter, H.N.; Lever, A.B.P. Synthesis and Characterization of Ruthenium Bis-Bipyridine Mono- and Disulfinato Complexes. Inorg. Chem. 2009, 48, 2018–2027. [Google Scholar] [CrossRef]
- Hesek, D.; Inoue, Y.; Everitt, S.R.L.; Ishida, H.; Kunieda, M.; Drew, M.G.B. Preparation and Structural Elucidation of Novel Cis Ruthenium(II) Bis(Bipyridine) Sulfoxide Complexes†. J. Chem. Soc. Dalton Trans. 1999, 3701–3709. [Google Scholar] [CrossRef]
- Lauter, M.; Breitinger, D.K.; Breiter, R.; Mink, J.; Bencze, E. Normal Coordinate Analyses of Ruthenium–Sulfur Dioxide Complexes. J. Mol. Struct. 2001, 563–564, 383–388. [Google Scholar] [CrossRef]
- Wu, L.; Eberhart, M.; Nayak, A.; Brennaman, M.K.; Shan, B.; Meyer, T.J. A Molecular Silane-Derivatized Ru(II) Catalyst for Photoelectrochemical Water Oxidation. J. Am. Chem. Soc. 2018, 140, 15062–15069. [Google Scholar] [CrossRef]












| Compound | Eox1/V | Eox2/V | Eox3/V | Eox4/V |
| [Ru(bpy)3]2+ | +1.10 | |||
| Ru(bda)(bpy)2 | +1.19 | |||
| Ru(bda)(pic)2 [16] | +0.47 | +0.71 | - | +1.05 |
| Ru(bda)(cp)2 | +0.47 | +0.69 | +0.82 | +1.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Cancelliere, A.M.; Cigala, R.M.; Samperi, M.; Cannilla, C.; Nastasi, F.; Ielo, I.; La Ganga, G.; De Luca, G. Diatom-Inspired Design: A New Ru-Based Photosystem for Efficient Oxygen Evolution. Materials 2026, 19, 134. https://doi.org/10.3390/ma19010134
Cancelliere AM, Cigala RM, Samperi M, Cannilla C, Nastasi F, Ielo I, La Ganga G, De Luca G. Diatom-Inspired Design: A New Ru-Based Photosystem for Efficient Oxygen Evolution. Materials. 2026; 19(1):134. https://doi.org/10.3390/ma19010134
Chicago/Turabian StyleCancelliere, Ambra Maria, Rosalia Maria Cigala, Mario Samperi, Catia Cannilla, Francesco Nastasi, Ileana Ielo, Giuseppina La Ganga, and Giovanna De Luca. 2026. "Diatom-Inspired Design: A New Ru-Based Photosystem for Efficient Oxygen Evolution" Materials 19, no. 1: 134. https://doi.org/10.3390/ma19010134
APA StyleCancelliere, A. M., Cigala, R. M., Samperi, M., Cannilla, C., Nastasi, F., Ielo, I., La Ganga, G., & De Luca, G. (2026). Diatom-Inspired Design: A New Ru-Based Photosystem for Efficient Oxygen Evolution. Materials, 19(1), 134. https://doi.org/10.3390/ma19010134

