Influence of Precursors on Physical Characteristics of MoS2 and Their Correlation with Potential Electrochemical Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. MoS2 Synthesis
2.2. Characterization
2.3. Electrode Preparation
2.4. Electrochemical Measurements
3. Results and Discussion
3.1. Morphological and Structural Characterization
3.2. Electrochemical Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salagean, C.A.; Costinas, C.; Cotet, L.C.; Baia, L. Insights into the influence of key preparation parameters on the performance of MoS2/graphene oxide composites as active materials in supercapacitors. Catalysts 2021, 11, 1553. [Google Scholar] [CrossRef]
- Dehghani-Sanij, A.R.; Tharumalingam, E.; Dusseault, M.B.; Fraser, R. Study of energy storage systems and environmental challenges of batteries. Renew. Sustain. Energy Rev. 2019, 104, 192–208. [Google Scholar] [CrossRef]
- Shaikh, M.R.S. A Review Paper on Electricity Generation from Solar Energy. Int. J. Res. Appl. Sci. Eng. Technol. 2017, 5, 1884–1889. [Google Scholar] [CrossRef]
- Grätzel, M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 2005, 44, 6841–6851. [Google Scholar] [CrossRef]
- Ajayi, O.O. Assessment of utilization of wind energy resources in Nigeria. Energy Policy 2009, 37, 750–753. [Google Scholar] [CrossRef]
- Shen, X.; Liu, H.; Cheng, X.-B.; Yan, C.; Huang, J.-Q. Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes. Energy Storage Mater. 2018, 12, 161–175. [Google Scholar] [CrossRef]
- Zhang, S.; Pan, N. Supercapacitors performance evaluation. Adv. Energy Mater. 2015, 5, 1401401. [Google Scholar] [CrossRef]
- Salanne, M.; Rotenberg, B.; Naoi, K.; Kaneko, K.; Taberna, P.-L.; Grey, C.P.; Dunn, B.; Simon, P. Efficient storage mechanisms for building better supercapacitors. Nat. Energy 2016, 1, 16070. [Google Scholar] [CrossRef]
- Tang, G.; Sun, J.; Wei, C.; Wu, K.; Ji, X.; Liu, S.; Tang, H.; Li, C. Synthesis and characterization of flowerlike MoS2 nanostructures through CTAB-assisted hydrothermal process. Mater. Lett. 2012, 86, 9–12. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, K.; Guo, X.-L.; Wang, W.-Y.; Yang, Y.-Q. A comparison of MoS2 catalysts hydrothermally synthesized from different sulfur precursors in their morphology and hydrodeoxygenation activity. Ranliao Huaxue Xuebao/J. Fuel Chem. Technol. 2018, 46, 535–542. [Google Scholar] [CrossRef]
- Waskito, I.S.; Kurniawan, B.; Amal, M.I.; Hanifuddin, M. The Effect of Precursors Concentration on the Structural Properties of MoS2Nanosheet-Microsphere Synthesized Via Hydrothermal Route. IOP Conf. Ser. Mater. Sci. Eng. 2019, 456, 042048. [Google Scholar] [CrossRef]
- Gul, H.; Shah, A.-U.A.; Bilal, S. Achieving ultrahigh cycling stability and extended potential window for supercapacitors through asymmetric combination of conductive polymer nanocomposite and activated carbon. Polymers 2019, 11, 1678. [Google Scholar] [CrossRef]
- Manuraj, M.; Nair, K.K.; Unni, K.N.; Rakhi, R. High performance supercapacitors based on MoS2 nanostructures with near commercial mass loading. J. Alloys Compd. 2020, 819, 152963. [Google Scholar] [CrossRef]
- Ma, L.; Chen, W.-X.; Li, H.; Zheng, Y.-F.; Xu, Z.-D. Ionic liquid-assisted hydrothermal synthesis of MoS2 microspheres. Mater. Lett. 2008, 62, 797–799. [Google Scholar] [CrossRef]
- Cui, Y.; He, J.; Yuan, F.; Xue, J.; Li, X.; Wang, J. Preparation of MoS2 microspheres through surfactants-assisted hydrothermal synthesis using thioacetamide as reducing agent. Hydrometallurgy 2016, 164, 184–188. [Google Scholar] [CrossRef]
- Wang, L.; Ma, Y.; Yang, M.; Qi, Y. Hierarchical hollow MoS2 nanospheres with enhanced electrochemical properties used as an Electrode in Supercapacitor. Electrochim. Acta 2015, 186, 391–396. [Google Scholar] [CrossRef]
- Sinha, A.; Dhanjai; Tan, B.; Huang, Y.; Zhao, H.; Dang, X.; Chen, J.; Jain, R. MoS2 nanostructures for electrochemical sensing of multidisciplinary targets: A review. TrAC Trends Anal. Chem. 2018, 102, 75–90. [Google Scholar] [CrossRef]
- Mphuthi, N.; Sikhwivhilu, L.; Ray, S.S. Functionalization of 2D MoS2 Nanosheets with Various Metal and Metal Oxide Nanostructures: Their Properties and Application in Electrochemical Sensors. Biosensors 2022, 12, 386. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, R.; Dong, C.; Cheng, F.; Guo, Y. Sensitive electrochemical sensor for nitrite ions based on rose-like AuNPs/MoS2/graphene composite. Biosens. Bioelectron. 2019, 142, 111529. [Google Scholar] [CrossRef]
- Rowley-Neale, S.J.; Fearn, J.M.; Brownson, D.A.C.; Smith, G.C.; Ji, X.; Banks, C.E. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction. Nanoscale 2016, 8, 14767–14777. [Google Scholar] [CrossRef]
- Wang, T.; Chen, S.; Pang, H.; Xue, H.; Yu, Y. MoS2-Based Nanocomposites for Electrochemical Energy Storage. Adv. Sci. 2017, 4, 1600289. [Google Scholar] [CrossRef]
- Ma, C.; Zhai, N.; Liu, B.; Yan, S. Defected MoS2: An efficient electrochemical nitrogen reduction catalyst under mild conditions. Electrochim. Acta 2021, 370, 137695. [Google Scholar] [CrossRef]
- Rusu, M.M.; Fort, C.I.; Cotet, L.C.; Vulpoi, A.; Todea, M.; Turdean, G.L.; Danciu, V.; Popescu, I.C.; Baia, L. Insights into the morphological and structural particularities of highly sensitive porous bismuth-carbon nanocomposites based electrochemical sensors. Sens. Actuators B Chem. 2018, 268, 398–410. [Google Scholar] [CrossRef]
- Fort, C.I.; Cotet, L.C.; Vasiliu, F.; Marginean, P.; Danciu, V.; Popescu, I.C. Methanol oxidation at carbon paste electrodes modified with (Pt–Ru)/carbon aerogels nanocomposites. Mater. Chem. Phys. 2016, 172, 179–188. [Google Scholar] [CrossRef]
- Lee, C.M.; Park, G.C.; Lee, S.M.; Choi, J.H.; Jeong, S.H.; Seo, T.Y.; Jung, S.-B.; Lim, J.H.; Joo, J. Effects of precursor concentration on morphology of MoS2 nanosheets by hydrothermal synthesis. J. Nanosci. Nanotechnol. 2016, 16, 11548–11551. [Google Scholar] [CrossRef]
- Sheng, B.; Liu, J.; Li, Z.; Wang, M.; Zhu, K.; Qiu, J.; Wang, J. Effects of excess sulfur source on the formation and photocatalytic properties of flower-like MoS2 spheres by hydrothermal synthesis. Mater. Lett. 2015, 144, 153–156. [Google Scholar] [CrossRef]
- Xu, H.; Zhu, J.; Ma, Q.; Ma, J.; Bai, H.; Chen, L.; Mu, S. Two-dimensional MoS2: Structural properties, synthesis methods, and regulation strategies toward oxygen reduction. Micromachines 2021, 12, 240. [Google Scholar] [CrossRef]
- Lee, S.-J.; Son, Y.-S.; Choi, J.-H.; Kim, S.-S.; Park, S.-Y. Morphology and catalytic performance of MoS2 hydrothermally synthesized at various pH values. Catalysts 2021, 11, 1229. [Google Scholar] [CrossRef]
- Wang, X.; Ding, J.; Yao, S.; Wu, X.; Feng, Q.; Wang, Z.; Geng, B. High supercapacitor and adsorption behaviors of flower-like MoS2 nanostructures. J. Mater. Chem. A 2014, 2, 15958–15963. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, X.; Xu, Y.; Li, C.; Liu, W.; Yi, S.; Wang, K.; Sun, X.; Wu, Z.; Ma, Y. Tetrabutylammonium-Intercalated 1T-MoS2 Nanosheets with Expanded Interlayer Spacing Vertically Coupled on 2D Delaminated MXene for High-Performance Lithium-Ion Capacitors. Adv. Funct. Mater. 2021, 31, 2104286. [Google Scholar] [CrossRef]
- Rasamani, K.D.; Alimohammadi, F.; Sun, Y. Interlayer-expanded MoS2. Mater. Today 2017, 20, 83–91. [Google Scholar] [CrossRef]
- Silambarasan, K.; Archana, J.; Harish, S.; Navaneethan, M.; Sankar Ganesh, R.; Ponnusamy, S.; Muthamizhchelvan, C.; Hara, K. One-step fabrication of ultrathin layered 1T@2H phase MoS2 with high catalytic activity based counter electrode for photovoltaic devices. J. Mater. Sci. Technol. 2020, 51, 94–101. [Google Scholar] [CrossRef]
- Feng, G.; Wei, A.; Zhao, Y.; Liu, J. Synthesis of flower-like MoS2 nanosheets microspheres by hydrothermal method. J. Mater. Sci. Mater. Electron. 2015, 26, 8160–8166. [Google Scholar] [CrossRef]
- Hu, K.; Hu, X.; Jiang, P. Large-scale and morphology-controlled synthesis of nano-sized molybdenum disulphide particles by different sulphur sources. Int. J. Mater. Prod. Technol. 2010, 39, 378–387. [Google Scholar] [CrossRef]
- Sarmah, D.; Kumar, A. Symmetric Supercapacitors with layer-by-layer Molybdenum disulfide—Reduced graphene oxide structures and poly(3,4-ethylenedioxythiophene) nanoparticles nanohybrid electrode. J. Energy Storage 2021, 35, 102289. [Google Scholar] [CrossRef]
- Yao, Y.; Ao, K.; Lv, P.; Wei, Q. MoS2 coexisting in 1T and 2H phases synthesized by common hydrothermal method for hydrogen evolution reaction. Nanomaterials 2019, 9, 844. [Google Scholar] [CrossRef]
- Ghosh, S.; Courthéoux, L.; Brunet, S.; Lacroix-Desmazes, P.; Pradel, A.; Girard, E.; Uzio, D. Hybrid CoMoS—Polyaniline nanowires catalysts for hydrodesulfurisation applications. Appl. Catal. A Gen. 2021, 623, 118264. [Google Scholar] [CrossRef]
- Singh, J.; Rishikesh; Kumar, S.; Soni, R. Synthesis of 3D-MoS2 nanoflowers with tunable surface area for the application in photocatalysis and SERS based sensing. J. Alloys Compd. 2020, 849, 156502. [Google Scholar] [CrossRef]
- Sun, T.; Li, Z.; Liu, X.; Ma, L.; Wang, J.; Yang, S. Facile construction of 3D graphene/MoS2 composites as advanced electrode materials for supercapacitors. J. Power Sources 2016, 331, 180–188. [Google Scholar] [CrossRef]
- Barredo, J.G. Fast electrode reactions. J. Chem. Phys. 1951, 19, 1065–1066. [Google Scholar] [CrossRef]
- Turdean, G.L.; Fort, I.C.; Simon, V. In vitro short-time stability of a bioactive glass-chitosan composite coating evaluated by using electrochemical methods. Electrochim. Acta 2015, 182, 707–714. [Google Scholar] [CrossRef]
- Cheng, J.; Gao, S.; Zhang, P.; Wang, B.; Wang, X.; Liu, F. Influence of crystallinity of CuCo2S4 on its supercapacitive behavior. J. Alloys Compd. 2020, 825, 153984. [Google Scholar] [CrossRef]
Molybdenum Precursor (42 mM) | Sulfur Precursor (840 mM) | Molar Ratio of Mo: S Precursors | Sample Name |
---|---|---|---|
Na2MoO4·2H2O | C3H7NO2S | 1:20 | A |
Na2MoO4·2H2O | CH4N2S | B | |
Na2MoO4·2H2O | C2H5NS | C | |
(NH4)6Mo7O24·4H2O | C3H7NO2S | D | |
(NH4)6Mo7O24·4H2O | CH4N2S | E | |
(NH4)6Mo7O24·4H2O | C2H5NS | F |
Sample Name | Elemental Composition (Atomic %) | Mo:S Ratio | Incorporated O2− (Atomic %) | ||
---|---|---|---|---|---|
Mo | S | O | |||
A | 15.9 | 43.9 | 40.2 | 1:2.76 | 40.2 |
B | 22.7 | 47.7 | 29.6 | 1:2.10 | 29.6 |
C | 15.8 | 47.5 | 36.8 | 1:3.00 | 36.8 |
D | 11.6 | 26.8 | 61.5 | 1:2.31 | 61.5 |
E | 24.8 | 43.2 | 32.1 | 1:1.74 | 32.1 |
F | 22.8 | 53.4 | 24.8 | 1:2.34 | 24.8 |
Sample | St (m2/g) | Vp (cm3/g) | Dm (nm) |
---|---|---|---|
Commercial | 1.5 | 0.03 | - |
A | 8 | 0.07 | 4–15; 20–60 |
C | 18 | 0.10 | 4–10; 20–80 |
D | 20 | 0.10 | 4–10; 10–65 |
E | 28 | 0.11 | 4–10; 20–60 |
Electrode | A | B | C | D |
---|---|---|---|---|
Rel (Ω × cm2) | 5.48 ± 0.26 | 6.69 ± 2.77 | 4.70 ± 0.81 | 4.01 ± 2.85 |
Qf (µS × sn/cm2) | 39.54 ± 0.79 | 54.27 ± 15.91 | 25.00 ± 3.05 | 19.94 ± 4.18 |
n | 0.91 | 0.76 | 0.89 | 0.86 |
Rf (Ω × cm2) | 145.0 ± 0.21 | 17.06 ± 3.08 | 141.5 ± 2.25 | 477.4 ± 3.07 |
Qdl (mS × sn/cm2) | 13.34 ± 0.57 | 5.39 ± 2.57 | 1.51 ± 6.27 | 2.13 ± 6.22 |
n | 0.74 ± 0.75 | 0.557 ± 1.65 | 0.600 ± 4.66 | 0.52 ± 9.76 |
Rct (Ω × cm2) | 694.3 ± 4.05 | 158.6 ± 3.86 | 127.5 ± 4.95 | 971.9 ± 19.19 |
W (mS × s1/2/cm2) | 230.5 ± 12.27 | 30.08 ± 2.59 | 28.92 ± 2.09 | - |
C (µF/cm2) | 29,160 | 4760 | 500 | 4170 |
χ2 | 0.0000314 | 0.0001655 | 0.000114 | 0.0008212 |
Electrode | E | F | commercial | GCE |
Rel (Ω × cm2) | 4.82 ± 6.79 | 4.41 ± 1.14 | 7.66 ± 1.80 | 4.81 ± 0.57 |
Qf (µS × sn/cm2) | 1845 ± 8.18 | 19.06 ± 6.15 | 14.97 ± 4.34 | |
n | 0.56 | 0.92 | 0.292 | |
Rf (Ω × cm2) | 4.29 ± 20.31 | 32.1 ± 2.23 | 13.42 ± 1.044 | - |
Qdl (mS × sn/cm2) | 6.57 ± 17.62 | 16.79 ± 9.10 | 1.79 ± 5.44 | 13.02 ± 1.15 |
n | 0.765 ± 3.97 | 0.407 ± 2.80 | 0.91 ± 1.20 | 0.92 ± 0.14 |
Rct (Ω × cm2) | 225.9 ± 3.04 | 69.6 ± 5.31 | 9763 ± 0.78 | 186.5 ± 0.19 |
W (mS × s1/2/cm2) | 31.67 ± 13.53 | 57.59 ± 2.58 | - | 27.71 ± 0.85 |
C (µF/cm2) | 7420 | 21070 | 1.2 | 7.71 |
χ2 | 0.0003559 | 0.000115 | 0.00004114 | 0.000066 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sălăgean, C.A.; Coteț, L.C.; Baia, M.; Fort, C.I.; Turdean, G.L.; Barbu-Tudoran, L.; Lazar, M.D.; Baia, L. Influence of Precursors on Physical Characteristics of MoS2 and Their Correlation with Potential Electrochemical Applications. Materials 2025, 18, 2111. https://doi.org/10.3390/ma18092111
Sălăgean CA, Coteț LC, Baia M, Fort CI, Turdean GL, Barbu-Tudoran L, Lazar MD, Baia L. Influence of Precursors on Physical Characteristics of MoS2 and Their Correlation with Potential Electrochemical Applications. Materials. 2025; 18(9):2111. https://doi.org/10.3390/ma18092111
Chicago/Turabian StyleSălăgean, Cătălin Alexandru, Liviu Cosmin Coteț, Monica Baia, Carmen Ioana Fort, Graziella Liana Turdean, Lucian Barbu-Tudoran, Mihaela Diana Lazar, and Lucian Baia. 2025. "Influence of Precursors on Physical Characteristics of MoS2 and Their Correlation with Potential Electrochemical Applications" Materials 18, no. 9: 2111. https://doi.org/10.3390/ma18092111
APA StyleSălăgean, C. A., Coteț, L. C., Baia, M., Fort, C. I., Turdean, G. L., Barbu-Tudoran, L., Lazar, M. D., & Baia, L. (2025). Influence of Precursors on Physical Characteristics of MoS2 and Their Correlation with Potential Electrochemical Applications. Materials, 18(9), 2111. https://doi.org/10.3390/ma18092111