Effect of Al Content and Local Chemical Order on the Stacking Fault Energy in Ti–V–Zr–Nb–Al High-Entropy Alloys Based on First Principles
Abstract
:1. Introduction
2. Methodology
2.1. DFT Calculations
2.2. DFT-Based Monte Carlo Simulations
2.3. Local Chemical Parameter
2.4. Stacking Fault Energy Calculations
3. Results and Discussion
3.1. Local Chemical Order in Ti–V–Zr–Nb–Al High-Entropy Alloys
3.2. Stacking Fault Energy of Random Solid-Solution Ti–V–Zr–Nb–Al Alloys
3.3. Local Chemical Order Influence on Stacking Fault Energy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yeh, J.-W.; Chen, S.K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 212, 375–377. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Miracle, D.B.; Chuang, C.P.; Liaw, P.K. Refractory high-entropy alloys. Intermetallics 2010, 18, 1758–1765. [Google Scholar] [CrossRef]
- Li, T.; Wang, S.; Fan, W.; Lu, Y.; Wang, T.; Li, T.; Liaw, P.K. CALPHAD-aided design for superior thermal stability and mechanical behavior in a TiZrHfNb refractory high-entropy alloy. Acta Mater. 2023, 246, 118728. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Huang, S.; Liu, H.; Yan, Y. Electrochemical behavior and passivation film characterization of TiZrHfNb multi-principal element alloys in NaCl-containing solution. Corros. Sci. 2024, 235, 112185. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, H.; Su, Y.; Qiao, L.; Yan, Y. Exploring high corrosion-resistant refractory high-entropy alloy via a combined experimental and simulation study. NPJ Mater. Degrad. 2024, 8, 77. [Google Scholar] [CrossRef]
- Suzuki, H. Segregation of solute atoms to stacking faults. J. Phys. Soc. Jpn. 1962, 17, 322–325. [Google Scholar] [CrossRef]
- Wang, L.; Chen, S.; Cao, T.; Wang, B.; Wang, L.; Ren, Y.; Liang, J.; Xue, Y. Lightweight Zr1.2V0.8NbTixAly high-entropy alloys with high tensile strength and ductility. Mater. Sci. Eng. A. 2021, 814, 141234. [Google Scholar] [CrossRef]
- Zeng, H.; Han, M.; Li, B.; Wang, L.; Jin, K.; Wang, B.; Sun, S.; Wang, L.; Xue, Y. Ti-Zr-V-Nb-Al BCC high-entropy alloy with outstanding uniform ductility achieved by grain refinement. Microstructures 2025, 5, 2025010. [Google Scholar] [CrossRef]
- Shih, M.; Miao, J.; Mills, M.; Ghazisaeidi, M. Stacking fault energy in concentrated alloys. Nat. Commun. 2021, 12, 3590. [Google Scholar] [CrossRef]
- Wang, X.; Xu, S.; Jian, W.-R.; Li, X.-G.; Su, Y.; Beyerlein, I.J. Generalized stacking fault energies and Peierls stresses in refractory body-centered cubic metals from machine learning-based interatomic potentials. Comput. Mater. Sci. 2021, 192, 110364. [Google Scholar] [CrossRef]
- Utt, D.; Lee, S.; Xing, Y.; Jeong, H.; Stukowski, A.; Oh, S.H.; Dehm, G.; Albe, K. The origin of jerky dislocation motion in high-entropy alloys. Nat. Commun. 2022, 13, 4777. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ding, J.; Chen, S.; Jin, K.; Zhang, Q.; Cui, J.; Wang, B.; Chen, B.; Li, T.; Ren, Y.; et al. Tailoring planar slip to achieve pure metal-like ductility in body-centred-cubic multi-principal element alloys. Nat. Mater. 2023, 22, 950–957. [Google Scholar] [CrossRef]
- Chen, W.; Li, X. Structure and mechanical properties of novel lightweight refractory high entropy alloys NbMoTiZr-(Al/V): A combined first principles and experimental study. J. Alloys Compd. 2024, 973, 172855. [Google Scholar] [CrossRef]
- Wang, H.; Chen, W.; Fu, Z.; Chu, C.; Tian, Z.; Jiang, Z.; Wen, H. Lightweight Ti-Zr-Nb-Al-V refractory high-entropy alloys with superior strength-ductility synergy and corrosion resistance. Int. J. Refract. Met. Hard Mater. 2023, 116, 106331. [Google Scholar] [CrossRef]
- Senkov, O.; Jensen, J.; Pilchak, A.; Miracle, D.; Fraser, H. Compositional variation effects on the microstructure and properties of a refractory high entropy superalloy AlMo0.5NbTa0.5TiZr. Mater. Des. 2018, 139, 498–511. [Google Scholar] [CrossRef]
- Vítek, V. Intrinsic stacking faults in body-centred cubic crystals. Philos. Mag. 1968, 18, 773–786. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Hastings, W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970, 57, 97–109. [Google Scholar] [CrossRef]
- Cowley, J.M. X-ray measurement of order in single crystals of Cu3Au. J. Appl. Phys. 1950, 21, 24–30. [Google Scholar] [CrossRef]
- Achmad, T.L.; Fu, W.; Chen, H.; Zhang, C.; Yang, Z.G. First-principles calculations of generalized-stacking-fault-energy of Co-based alloys. Comput. Mater. Sci. 2016, 121, 86–96. [Google Scholar] [CrossRef]
- Wu, Y.; Li, S.; Ding, Z.; Liu, W.; Zhao, Y.; Zhu, Y. Effect of charge redistribution factor on stacking-fault energies of Mg-based binary alloys. Scr. Mater. 2016, 112, 101–105. [Google Scholar] [CrossRef]
- Shi, S.; Zhu, L.; Zhang, H.; Sun, Z.; Ahuja, R. Mapping the relationship among composition, stacking fault energy and ductility in Nb alloys: A first-principles study. Acta Mater. 2018, 144, 853–861. [Google Scholar] [CrossRef]
- Tamm, A.; Aabloo, A.; Klintenberg, M.; Stocks, M.; Caro, A. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys. Acta Mater. 2015, 99, 307–312. [Google Scholar] [CrossRef]
- Pei, Z. An overview of modeling the stacking faults in lightweight and high-entropy alloys: Theory and application. Mater. Sci. Eng. A 2018, 737, 132–150. [Google Scholar] [CrossRef]
- Zhao, X.; Song, K.; Huang, H.; Yan, Y.; Su, Y.; Qian, P. Effect of Alloying Elements on the Stacking Fault Energy and Ductility in Mg2Si Intermetallic Compounds. ACS Omega 2021, 6, 20254–20263. [Google Scholar] [CrossRef] [PubMed]
- Chin, G.Y. Competition among {110}, {112}, and {123} <111> slip modes in BCC metals. Metall Trans. 1972, 3, 2213–2216. [Google Scholar] [CrossRef]
- Bhardwaj, V.; Zhou, Q.; Zhang, F.; Han, W.; Du, Y.; Hua, K.; Wang, H. Effect of Al addition on the microstructure, mechanical and wear properties of TiZrNbHf refractory high entropy alloys. Tribol. Int. 2021, 160, 107031. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, F.; Yuan, X.; Huang, H.; Wen, X.; Wang, Y.; Zhang, M.; Wu, H.; Liu, X.; Wang, H.; et al. Short-range ordering and its effects on mechanical properties of high-entropy alloys. J. Mater. Sci. Technol. 2021, 62, 214–220. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Yang, X.; Zhao, X.; Wen, C.; Huang, H. Effect of Al Content and Local Chemical Order on the Stacking Fault Energy in Ti–V–Zr–Nb–Al High-Entropy Alloys Based on First Principles. Materials 2025, 18, 2053. https://doi.org/10.3390/ma18092053
Chen M, Yang X, Zhao X, Wen C, Huang H. Effect of Al Content and Local Chemical Order on the Stacking Fault Energy in Ti–V–Zr–Nb–Al High-Entropy Alloys Based on First Principles. Materials. 2025; 18(9):2053. https://doi.org/10.3390/ma18092053
Chicago/Turabian StyleChen, Mengyao, Xiaowen Yang, Xinpeng Zhao, Cheng Wen, and Haiyou Huang. 2025. "Effect of Al Content and Local Chemical Order on the Stacking Fault Energy in Ti–V–Zr–Nb–Al High-Entropy Alloys Based on First Principles" Materials 18, no. 9: 2053. https://doi.org/10.3390/ma18092053
APA StyleChen, M., Yang, X., Zhao, X., Wen, C., & Huang, H. (2025). Effect of Al Content and Local Chemical Order on the Stacking Fault Energy in Ti–V–Zr–Nb–Al High-Entropy Alloys Based on First Principles. Materials, 18(9), 2053. https://doi.org/10.3390/ma18092053