Accelerated Aging of Tapes Applied to Secure Criminal Contact Traces—Effect on Physio-Mechanical and Safety Behavior
Abstract
:1. Introduction
- Security film: Used to secure traces such as fingerprints. These films can be transparent or frosted, allowing traces to be easily viewed without damaging them.
- Polymeric adhesives: Used to collect and hold traces such as fingerprints. These adhesives can be formulated in a variety of ways to ensure effective adhesion to the surfaces where the marks are found.
- Silicones: Used to create footprints, especially for 3D footprints such as shoe prints. Silicone impression compounds allow for the faithful reproduction of details.
- Sprays and powders for making fingerprints visible: they often contain polymers to make the prints more visible on different surfaces. Powders can have different colors and properties, making them easier to use on different types of materials.
- Materials for securing DNA traces: molecularly imprinted polymers (MIPs), fitted to the target specified types of molecules. Those polymers are highly suitable for forensic analysis as they bind to target molecules via non-covalent or covalent interactions in the presence of selected chemicals [11], for example, propylene glycol (PG) [12] and silk [13] have DNA preservative abilities.
- Adhesive tapes: Used to collect traces such as hair or fine particles. These tapes often have special properties to avoid damaging the samples being collected.
- Waxes and impression compounds: Used to preserve traces under difficult conditions, for example, when impressions are made from irregularly textured surfaces.
- A substrate;
- A gelatine-receiving layer;
- A covering film.
- Classic films in different colors and transparency;
- Films on a rubber backing, suitable for recording traces using fingerprint powders;
- Dactyloscopy Datasets: consisting of a transparent film with a classic 0.5–0.6 mm gelatine layer, to which is attached a sheet of suitably adapted paper substrate. The trace will be archived in a mirror [14].
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Accelerated Aging Study
- Four storage periods were simulated, i.e., 6 months, 12 months, 18 months, and 24 months, which corresponded to the following incubation times of the tested samples: 18 days, 37 days, 55.5 days, and 74 days;
- At an accelerated aging temperature (TAA) of 55 °C;
- Q10 = 2.0, where Q is a constant applied to the accelerated aging describing how 10 °C alterations influence the rate of aging;
- In four storage periods at real/accelerated conditions as follows: 6/18.5, 12/37, 18/55.5, or 24/74 months/days;
- At a relative humidity of 55%;
- At an accelerated aging temperature (TAA) of 55 °C;
- Q10 = 2.0, where Q is a constant applied to the accelerated aging describing how 10 °C alterations influence the rate of aging;
2.2.2. Accelerated Aging Using Temperature or Temperature and Humidity as Aging Factors
2.2.3. Accelerated Aging Study with UV as an Aging Factor
2.2.4. Determination of the Physico-Mechanical Properties of the Tested Tapes
- (A)
- Areal Density
- (B)
- Thickness
- (C)
- Density
- (D)
- Tensile Strength
- -
- Type of tensile testing machine: CRE;
- -
- LE: 100 mm;
- -
- Preload: 0.1 MPa;
- -
- Specimen shape type: 2;
- -
- Specimen width: 10 mm;
- -
- Crosshead speed: 200 mm/min;
- -
- Number of specimens: 5 in each direction.
- (E)
- Peel Adhesion
- -
- Type of tensile testing machine: CRE;
- -
- LE: 100 mm;
- -
- Peel angle: 180°;
- -
- Specimen width: 25 mm;
- -
- Crosshead speed: 300 mm/min;
- -
- Peel direction: in length;
- -
- Plate type: aluminum;
- -
- Number of specimens: 5 in length;
- -
- Roller pressure: 2 kg/cm.
- (F)
- Chemical Resistance Test
- 40% sodium hydroxide (NaOH, Chempur, Piekary Śląskie, Poland);
- 32% hydrochloric acid (HCl, Chempur, Poland);
- 65% nitric acid (HNO3. Chempur, Poland);
- Gasoline (Chempur, Poland);
- Acetone (Chempur, Poland).
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roux, C.; Talbot-Wright, B.; Robertson, J.; Crispino, F.; Ribaux, O. The end of the (forensic science) world as we know it? The example of trace evidence. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140260. [Google Scholar] [CrossRef] [PubMed]
- Trejos, T.; Koch, S.; Mehltretter, A. Scientific foundations and current state of trace evidence—A review. Forensic Chem. 2020, 18, 100223. [Google Scholar] [CrossRef]
- Kosińska, A.; Mrózek, M.; Łopyta-Mirocha, M.; Tomsia, M. The smallest traces of crime: Trace elements in forensic science. J. Trace Elem. Med. Biol. 2024, 86, 127527. [Google Scholar] [CrossRef] [PubMed]
- de Gruijter, M.; de Poot, C.H. Elffers, Reconstructing with trace information: Does rapid identification information lead to better crime reconstructions? J. Investig. Psychol. Offender Profiling 2017, 14, 88–103. [Google Scholar] [CrossRef]
- Joseph, C.M. Forensic Biology: A Passport for Biological Evidence. In Crime Scene Management Within Forensic Science; Singh, J., Sharma, N.R., Eds.; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Khalilia, W.D.; Mahmoud Rabaia, A.A. Level of Experiences in Processing of Biological Forensic Traces at the Crime Scene among Palestinian Police Employees. J. Forensic Investig. 2024, 11, 1. [Google Scholar] [CrossRef]
- Recipon, M.; Agniel, R.; Leroy-Dudal, J.; Fritz, T.; Carreiras, F.; Hermitte, F.; Hubac, S.; Gallet, O.; Kellouche, S. Targeting cell-derived markers to improve the detection of invisible biological traces for the purpose of genetic-based criminal identification. Sci. Rep. 2023, 13, 18105. [Google Scholar] [CrossRef]
- Stoney, D.A.; Stoney, P.L. Critical review of forensic trace evidence analysis and the need for a new approach. Forensic Sci. Int. 2015, 251, 159–170. [Google Scholar] [CrossRef] [PubMed]
- You, W.; Zhao, Y.-B.; Xu, S.-L.; Tian, S.-S. Visualization of latent fingermarks on fabric using multi-metal deposition (MMD)—A preliminary study. Forensic Sci. Int. 2021, 327, 110981. [Google Scholar] [CrossRef] [PubMed]
- Recipon, M.; Agniel, R.; Kunemann, P.; Ponche, A.; Carreiras, F.; Hermitte, F.; Leroy-Dudal, J.; Hubac, S.; Gallet, O.; Kellouche, S. Detection of invisible biological traces in relation to the physicochemical properties of substrates surfaces in forensic casework. Sci. Rep. 2024, 14, 13271. [Google Scholar] [CrossRef] [PubMed]
- Díez-Pascual, A.M. Perspectives of Polymers in Forensic, Analysis. Macromol 2023, 3, 108–119. [Google Scholar] [CrossRef]
- Martoni, F.; Nogarotto, E.; Piper, A.M.; Mann, R.; Valenzuela, I.; Eow, L.; Rako, L.; Rodoni, B.C.; Blacket, M.J. Propylene Glycol and Non-Destructive DNA Extractions Enable Preservation and Isolation of Insect and Hosted Bacterial DNA. Agriculture 2021, 11, 77. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, Z.; Gong, H.; Liu, M.; Guo, S.; Li, G.; Wang, X.; Kaplan, D.L. DNA preservation in silk. Biomater. Sci. 2017, 5, 1279–1292. [Google Scholar] [CrossRef] [PubMed]
- STANIMEX Products Catalogue–Forensic and Technical Films Datasheet. 2024. Available online: http://stanimex.pl (accessed on 1 April 2025).
- Rojek, M. Metodologia badań diagnostycznych warstwowych materiałów kompozytowych o osnowie polimerowej. Sci. J. World Acad. Mater. Manuf. Eng. 2011, 2, 11–31. [Google Scholar]
- Labuzek, S.; Nowak, B.; Pajak, J. Synthetic modified polyethylene polymers and their biodegradation. Biotechnologia 2003, 4, 110–123. [Google Scholar]
- Mucha, M. Polimery a Ekologia; Scientific Handbook of Lodz University of Technology; Lodz University of Technology: Łódź, Poland, 2002; ISBN 83-7283-058-4. [Google Scholar]
- Nowak, B.; Paja, J.; Płociniczak, T.; Łabuzek, S. Enzymes involved in polymer biodegradation. Biotechnologia 2008, 1, 45–52. [Google Scholar]
- Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/PDF/?uri=CELEX:52018DC0035&from=DE (accessed on 1 April 2025).
- Available online: https://www.plastech.pl/wiadomosci/Na-czym-polega-proces-starzenia-sie-tworzyw-16501?p=3 (accessed on 1 April 2025).
- Available online: https://www.plastech.pl/wiadomosci/Tworzywa-sztuczne-tez-sie-starzeja-16140 (accessed on 26 April 2025).
- Salvatierra, L.M.; Lambri, O.A.; Matteo, C.L.; Sorichetti, P.A.; Celauro, C.A.; Bolmaro, R.E. Growing of crystalline zones in EPDM irradiated with a low neutron flux. Nucl. Instrum. Methods Phys. Res. B 2004, 225, 297–304. [Google Scholar] [CrossRef]
- Lambri, O.A.; Salvatierra, L.M.; Sa, F.A.; Matteo, C.L.; Sorichetti, P.A.; Celauro, C.A. Crystal growth in EPDM by chemi-crystallisation as a function of the neutron irra-diation dose and flux level. Nucl. Instrum. Methods Phys. Res. B 2005, 237, 550–562. [Google Scholar] [CrossRef]
- Sobków, D.; Czaja, K. Wpływ warunków przyspieszonego starzenia na proces degradacji polyolefin. Polimery 2003, 48, 627–632. [Google Scholar]
- Kaczmarek, H. Efekty przyspieszania fotochemicznego rozkładu polimerów przez substancje mało- i wielkocząsteczkowe; Wydawnictwo Uniwersytetu M. Kopernika: Toruń, Poland, 1998. [Google Scholar]
- ASTM F1980-16; Standard Guide for Accelerated Aging of Sterile Barrier Systems for Medical Devices. ASTM: West Conshohocken, PA, USA, 1980.
- Gutowska, A.; Kubiak, P.; Kośla, K.; Wilbik-Hałgas, B.; Chmal-Fudali, E.; Kucharska-Jastrząbek, A.; Struszczyk, M.H. Accelerated Aging Effect on the Stability of the 3D-Printed Biodegradable Implant for Bone Defect Repairs. Materials 2024, 17, 6218. [Google Scholar] [CrossRef] [PubMed]
- PN-EN ISO 4892-1:2016-06; Plastics—Methods of Exposure to Laboratory Light Sources—Part 1: General Guidance. ISO: Geneva, Switzerland, 2016.
- PN-EN ISO 4892-2:2013-06; Plastics—Methods of Exposure to Laboratory Light Sources—Part 2: Xenon-Arc Lamps. ISO: Geneva, Switzerland, 2013.
- PN-ISO 4592:1998; Plastics-Film and Sheeting-Determination of Length and Width. ISO: Geneva, Switzerland, 1998.
- PN-ISO 4591:1999; Plastics-Film and Sheeting-Determination of Average Thickness of a Sample, and Average Thickness and Yield of a Roll, by Gravimetric Techniques (Gravimetric Thickness). ISO: Geneva, Switzerland, 1999.
- PN-EN ISO 527-1:2012; Plastics-Determination of Tensile Properties—Part 1: General Principles. ISO: Geneva, Switzerland, 2012.
- PN-EN ISO 527-3:2019-01; Plastics-Determination of Tensile Properties—Part 3: Test Conditions for Films and Sheets. ISO: Geneva, Switzerland, 2019.
- PN-EN 1939:2007; Self-Adhesive Tapes-Determination of Peel Adhesion Properties. ISO: Geneva, Switzerland, 2007.
- Cichecka, M.; Pałys, B.; Wilbik-Hałgas, B.; Struszczyk, M.H. Accelerated aging studies of the selected commercial films. Polimery 2021, 66, 350–356. [Google Scholar] [CrossRef]
Content | POLI TACK 850, (Sample A) polyacrylate-coated PET film, protected with siliconized PP film [Supplier: POLI-TAPE Klebefolien GmbH, Remagen, Germany] | POLI TACK 854, (Sample B) polyacrylate-coated PET film, protected with siliconized PP film [Supplier: POLI-TAPE Klebefolien GmbH, Remagen Germany] | ORAGUARD 210, (Sample C) PVC foil, UV protected, polyacrylate coated on one side, silicone paper protected [Supplier: ORAFOL, Oranienburg, Germany] | ORAGUARD 215, (Sample D) PVC foil, UV protected, coated on one side with polyacrylate solvent, protected with silicone paper [Supplier: ORAFOL, Oranienburg, Germany] |
Carrier | Clear matte polyester film | Clear matte polyester film | PVC foil | PVC foil |
Adhesion layer | Clear acrylic lacquer | Clear acrylic lacquer | Solvent-based polyacrylate, permanent, transparent | Solvent-based polyacrylate, permanent, transparent |
Sample | Simulated Aging Time [Month] | Chemicals | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
40% NaOH | 32% HCl | 65% HNO3 | Gasoline | Acetone | ||||||||||||
T (1) | T+W (2) | UV (3) | T (1) | T+W (2) | UV (3) | T (1) | T+W (2) | UV (3) | T (1) | T+W (2) | UV (3) | T (1) | T+W (2) | UV (3) | ||
A (POLI TACK 850) | 0 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
3 | n/a | n/a | + | n/a | n/a | + | n/a | n/a | + | n/a | n/a | + | n/a | n/a | + | |
6 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
12 | + | + | n/a | + | + | n/a | + | + | n/a | + | + | n/a | + | + | n/a | |
18 | + | + | n/a | + | + | n/a | + | + | n/a | + | + | n/a | + | + | n/a | |
24 | + | + | n/a | + | + | n/a | + | + | n/a | + | + | n/a | + | + | n/a | |
B (POLI TACK 854) | 0 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
3 | n/a | n/a | + | n/a | n/a | + | n/a | n/a | + | n/a | n/a | + | n/a | n/a | + | |
6 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
12 | + | + | n/a | + | + | n/a | + | + | n/a | + | + | n/a | + | + | n/a | |
18 | + | + | n/a | + | + | n/a | + | + | n/a | + | + | n/a | + | + | n/a | |
24 | + | + | n/a | + | + | n/a | + | + | n/a | + | + | n/a | + | + | n/a | |
C (ORAGUARD 210) | 0 | + | + | + | - | - | - | - | - | - | + | + | + | - | - | - |
3 | n/a | n/a | + | n/a | n/a | - | n/a | n/a | - | n/a | n/a | + | n/a | n/a | - | |
6 | + | + | + | - | - | - | - | - | - | + | + | + | - | - | - | |
12 | + | + | n/a | - | - | n/a | - | - | n/a | + | + | n/a | - | - | n/a | |
18 | + | + | n/a | - | - | n/a | - | - | n/a | + | + | n/a | - | - | n/a | |
24 | + | + | n/a | - | - | n/a | - | - | n/a | + | + | n/a | - | - | n/a | |
D (ORAGUARD 215) | 0 | + | + | + | - | - | - | - | - | - | + | + | + | - | - | - |
3 | n/a | n/a | + | n/a | n/a | - | n/a | n/a | - | n/a | n/a | + | n/a | n/a | - | |
6 | + | + | + | - | - | - | - | - | - | + | + | + | - | - | - | |
12 | + | + | n/a | - | - | n/a | - | - | n/a | + | + | n/a | - | - | n/a | |
18 | + | + | n/a | - | - | n/a | - | - | n/a | + | + | n/a | - | - | n/a | |
24 | + | + | n/a | - | - | n/a | - | - | n/a | + | + | n/a | - | - | n/a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olejnik, M.; Gutowska, A.; Cichecka, M.; Struszczyk, M.H.; Kubiak, P. Accelerated Aging of Tapes Applied to Secure Criminal Contact Traces—Effect on Physio-Mechanical and Safety Behavior. Materials 2025, 18, 2012. https://doi.org/10.3390/ma18092012
Olejnik M, Gutowska A, Cichecka M, Struszczyk MH, Kubiak P. Accelerated Aging of Tapes Applied to Secure Criminal Contact Traces—Effect on Physio-Mechanical and Safety Behavior. Materials. 2025; 18(9):2012. https://doi.org/10.3390/ma18092012
Chicago/Turabian StyleOlejnik, Magdalena, Agnieszka Gutowska, Magdalena Cichecka, Marcin H. Struszczyk, and Paweł Kubiak. 2025. "Accelerated Aging of Tapes Applied to Secure Criminal Contact Traces—Effect on Physio-Mechanical and Safety Behavior" Materials 18, no. 9: 2012. https://doi.org/10.3390/ma18092012
APA StyleOlejnik, M., Gutowska, A., Cichecka, M., Struszczyk, M. H., & Kubiak, P. (2025). Accelerated Aging of Tapes Applied to Secure Criminal Contact Traces—Effect on Physio-Mechanical and Safety Behavior. Materials, 18(9), 2012. https://doi.org/10.3390/ma18092012