Experimental Study on the Effects of Thermal Cycling and Ultraviolet Irradiation on Stable Characteristics of Carbon Fiber/Bismaleimide Polymer Composite Shells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Resin Specimens and Bistable Shells
2.2. Tensile Mechanical Properties and Thermal Resistance of Resins
2.3. Stable Characteristics of Bistable Shells
3. Results
3.1. High-Temperature Aging
3.2. Low-Temperature Aging
3.3. Thermocycling Aging
3.4. Ultraviolet Irradiation Aging
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sayam, A.; Rahman, A.N.M.; Rahman, M.S.; Smriti, S.A.; Ahmed, F.; Rabbi, M.F.; Hossain, M.; Faruque, M.O. A review on carbon fiber-reinforced hierarchical composites: Mechanical performance, manufacturing process, structural applications and allied challenges. Carbon Lett. 2022, 32, 1173–1205. [Google Scholar] [CrossRef]
- Zhang, C.; Ling, Y.Q.; Zhang, X.Q.; Liang, M.; Zou, H.W. Ultra-thin carbon fiber reinforced carbon nanotubes modified epoxy composites with superior mechanical and electrical properties for the aerospace field. Compos. Part A Appl. Sci. Manuf. 2022, 163, 107197. [Google Scholar] [CrossRef]
- Sun, Z.L.; Luo, Y.X.; Chen, C.Y.; Dong, Z.J.; Jiang, G.M.; Chen, F.X.; Ma, P.B. Mechanical enhancement of carbon fiber-reinforced polymers: From interfacial regulating strategies to advanced processing technologies. Prog. Mater. Sci. 2024, 142, 101221. [Google Scholar] [CrossRef]
- Abdelal, N.R. A shield of defense: Developing ballistic composite panels with effective electromagnetic interference shielding absorption. Def. Technol. 2024, 35, 123–136. [Google Scholar] [CrossRef]
- Liu, S.; Chevali, V.S.; Xu, Z.; Xu, Z.G.; Hui, D.; Wang, H. A review of extending performance of epoxy resins using carbon nanomaterials. Compos. Part B Eng. 2018, 136, 197–214. [Google Scholar] [CrossRef]
- Barbosa, A.P.C.; Fulco, A.P.P.; Guerra, E.S.S.; Arakaki, F.K.; Tosatto, M.; Costa, M.C.B.; Melo, J.D.D. Accelerated aging effects on carbon fiber/epoxy composites. Compos. Part B Eng. 2017, 110, 298–306. [Google Scholar] [CrossRef]
- Gu, J.W.; Yang, X.T.; Lv, Z.Y.; Li, N.; Liang, C.B.; Zhang, Q.Y. Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity. Int. J. Heat Mass Transf. 2016, 92, 15–22. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, H.; Li, S.; Chen, Y.; Liang, M.; Heng, Z.G.; Zou, H.W. Design of high-performance resin by tuning cross-linked network topology to improve CF/bismaleimide composite compressive properties. Compos. Sci. Technol. 2023, 242, 110170. [Google Scholar] [CrossRef]
- Savotchenko, S.; Kovaleva, E. The equation of glass transition of epoxy diane resin modified with the nanoparticle fillers. Polym. Bull. 2022, 79, 6733–6744. [Google Scholar] [CrossRef]
- Zrida, H.; Fernberg, P.; Ayadi, Z.; Varna, J. Microcracking in thermally cycled and aged carbon fibre/polyimide laminates. Int. J. Fatigue 2017, 94, 121–130. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, J.; Li, D.; Ma, Y.K.; Zhou, S.C.; Wang, Y.; Zhang, D.H. Bio-based hyperbranched epoxy resins: Synthesis and recycling. Chem. Soc. Rev. 2024, 53, 624–655. [Google Scholar] [CrossRef] [PubMed]
- Capricho, J.C.; Fox, B.; Hameed, N. Multifunctionality in epoxy resins. Polym. Rev. 2020, 60, 1–41. [Google Scholar] [CrossRef]
- Mi, X.Q.; Liang, N.; Xu, H.F.; Wu, J.; Jiang, Y.; Nie, B.; Zhang, D.H. Toughness and its mechanisms in epoxy resins. Prog. Mater. Sci. 2022, 130, 100977. [Google Scholar] [CrossRef]
- Zhang, Z.; Ye, G.F.; Wu, H.L.; Yang, J.; Kitipornchai, S.; Chai, G.Z. Bistable behaviour and microstructure characterization of carbon fiber/epoxy resin anti-symmetric laminated cylindrical shell after thermal exposure. Compos. Sci. Technol. 2017, 138, 91–97. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, S.; Ma, Y.L.; Pan, B.S.; Sun, M.; Zhang, G.; Chai, H.; Li, J.Q.; Jiang, S.F. Laser-assisted Thermoplastic Composite Automated Fiber Placement Robot for Bonding GF/PP Unidirectional Composites and Braided Composites. Compos. Part B Eng. 2024, 287, 111798. [Google Scholar] [CrossRef]
- Zhang, Z.; Pei, K.; Wu, H.L.; Wu, H.L.; Yu, X.C.; Wu, H.P.; Jiang, S.F.; Zhang, F. A novel solar tracking model integrated with bistable composite structures and bimetallic strips. Compos. Struct. 2020, 248, 112506. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, H.P.; Ma, J.Y.; Xiong, L.B.; Ren, S.Z.; Sun, M.; Wu, H.P.; Jiang, S.F. Space deployable bistable composite structures with C-cross section based on machine learning and multi-objective optimization. Compos. Struct. 2022, 297, 115983. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Wu, H.L.; Zhang, H.Q.; Wu, H.P.; Jiang, S.F.; Chai, G.Z. Mechanical analysis of functionally graded graphene oxide-reinforced composite beams based on the first-order shear deformation theory. Mech. Adv. Mater. Struct. 2020, 27, 3–11. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, D.Y.; Pan, B.S.; Zhou, H.P.; Ma, J.Y.; Sun, M.; Ren, S.Z.; Zhang, G. Inverse design method of deployable cylindrical composite shells for solar sail structure. Compos. Struct. 2025, 352, 118698. [Google Scholar] [CrossRef]
- Rio, T.G.D.; Zaera, R.; Barbero, E.; Xiong, L.D.; Ren, S.Z.; Sun, M.; Wu, H.P.; Jiang, S.F. Damage in CFRPs due to low velocity impact at low temperature. Compos. Part B Eng. 2005, 36, 41–50. [Google Scholar]
- Mante, F.; Saleh, N.; Mante, M. Softening patterns of postcure heat-treated denta composites. Dent. Mater. 1993, 9, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Simenou, G.; La, S.E.L.; Bailleul, J.L.; Bellettre, J. Heat transfer analysis during the hydrothermal degradation of an epoxy resin using differential scanning calorimetry (DSC). J. Therm. Anal. Calorim. 2016, 125, 861–869. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, J.; Chen, X.; Yang, S.; Huo, S.Q.; Chen, Q.F.; Guo, P.Z.; Wang, X.; Liu, F.; Chen, W. A phosphorus-containing tertiary amine hardener enabled flame retardant, heat resistant and mechanically strong yet tough epoxy resins. Chem. Eng. J. 2023, 468, 143811. [Google Scholar] [CrossRef]
- Ahrens, A.; Bonde, A.; Sun, H.; Wittig, N.K.; Hans, C.D.; Batista, G.M.F.; Sommerfeldt, A.; Frølich, S.; Birkedal, H.; Skrydstrup, T. Catalytic disconnection of C-O bonds in epoxy resins and composites. Nature 2023, 617, 730–737. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, H.B.; Yin, J.; Hui, D. Effect of pyrolytic carbon interface thickness on conductivity and mechanical and wear properties of copper mesh modified carbon/carbon composite. Mater. Des. 2018, 154, 302–311. [Google Scholar] [CrossRef]
- Jia, Z.; Li, T.T.; Chiang, F.P.; Wang, L.F. An experimental investigation of the temperature effect on the mechanics of carbon fiber reinforced polymer composites. Compos. Sci. Technol. 2018, 154, 53–63. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Chen, X.B.; Li, M.; Xing, L.Y. Investigation on compression strength after impact of carbon fiber reinforced bismaleimide resin matrix composites. J. Aeronaut. Mater. 2002, 22, 36–40. [Google Scholar]
- Ning, L.J.; Yuan, L.; Liang, G.Z.; Gu, A.J. Thermally resistant and strong remoldable triple-shape memory thermosets based on bismaleimide with transesterification. J. Mater. Sci. 2021, 56, 3623–3637. [Google Scholar] [CrossRef]
- Liu, K.; Xu, X.Y.; Zhang, B.M. Characterization and simulation of the nonlinear thermal field of the aramid/bismaleimide composites caused by the dielectric heating effects of the microwave radiations. Polym. Compos. 2021, 42, 2565–2573. [Google Scholar] [CrossRef]
- Ye, W.; Zhou, Y.; Liu, W.; Hou, Y.B.; Chu, F.K.; Hu, Y.; Song, L.; Hu, W.Z. Fabricating advanced MXene-based hybrid materials to elevate fire safety and mechanical strength in carbon fiber-reinforced bismaleimide resins. Chem. Eng. J. 2024, 487, 150456. [Google Scholar] [CrossRef]
- Madhukar, M.S.; Bowles, K.J.; Papadopoulos, D.S. Thermo-oxidative stability and fiber surface modification effects on the inplane shear properties of graphite/PMR-15 composites. J. Compos. Mater. 1997, 31, 596–618. [Google Scholar] [CrossRef]
- Yang, B.F.; Yue, Z.F.; Geng, X.L.; Wang, P.Y. Temperature effects on transverse failure modes of carbon fiber/bismaleimides composites. J. Compos. Mater. 2017, 51, 261–272. [Google Scholar] [CrossRef]
- Shimokawa, T.; Katoh, H.; Hamaguchi, Y.; Sanbongi, S. Effect of thermal cycling on microcracking and strength degradation of high-temperature polymer composite materials for use in next-generation SST structures. J. Compos. Mater. 2002, 36, 885–895. [Google Scholar] [CrossRef]
- Brunetti, M.; Mitura, A.; Romeo, F.; Warminski, J. Nonlinear dynamics of bistable composite cantilever shells: An experimental and modelling study. Thin-Walled Struct. 2022, 526, 116779. [Google Scholar] [CrossRef]
- Tan, Q.; Li, F.; Liu, L.; Liu, Y.J.; Leng, J.S. Effects of vacuum thermal cycling, ultraviolet radiation and atomic oxygen on the mechanical properties of carbon fiber/epoxy shape memory polymer composite. Polym. Test. 2023, 118, 107915. [Google Scholar] [CrossRef]
- Sun, Y.H.; Zhang, Y.Y.; Li, G.; Zuo, X.B.; Zuo, X.B.; Yang, X.P. Enhanced thermo-oxidative aging properties of cfrp composites by construction of heat resistance interface and interphase through waterborne polyamic acid sizing. Polym. Degrad. Stab. 2022, 206, 110171. [Google Scholar] [CrossRef]
- Zhan, Q.W.; Fan, X.L.; Sun, Q. Effects of hygrothermal environment on static properties of laminated composites with a circular open hole. J. Solid Rocket. Technol. 2011, 34, 764–767. [Google Scholar]
- Wang, Y.; Li, J.; Zhou, X.; Wang, T.; Zhao, Q.; Zhang, H.; Wang, Y.X.; Hou, X.L. Chemical degradation of carbon fiber reinforced bismaleimide resin composites to recover carbon fiber and nitrogen doped carbon materials. Compos. Sci. Technol. 2020, 199, 108342. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, X.; Tian, Z.; Ma, H.; Hou, X.L.; Wang, Y.X.; Wang, Y.Q. Controlling degradation and recycling of carbon fiber reinforced bismaleimide resin composites via selective cleavage of imide bonds. Compos. Part B Eng. 2022, 231, 109595. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Chen, X.L.; Ping, I. Toughness and hot/wet properties of a novel modified BMI/carbon fiber composite. J. Mater. Sci. Technol. 2001, 17, 17–18. [Google Scholar]
- Zhao, Q.S.; Li, Y.H.; Cao, Z.H.; Sun, D.S. A toughened bismaleimide resin as matrix for composite material. Polym. Test. 2020, 90, 106746. [Google Scholar]
- Zhang, C.; Cui, J.; Sui, W.; Gong, Y.N.; Liu, H.; Ao, Y.H.; Shang, L. High heat resistance, strength, and toughness of epoxy resin with cellulose nanofibers and structurally designed ionic liquid. Chem. Eng. J. 2023, 478, 147063. [Google Scholar] [CrossRef]
- Ma, X.; Chen, S.; Mei, M.; Li, Y.; Li, G.D.; Hu, H.F.; He, X.B.; Qu, X.H. Microstructure and mechanical behaviors of T700 carbon fiber reinforced C/SiC composites via precursor infiltration and pyrolysis. Mater. Sci. Eng. A 2016, 666, 178–187. [Google Scholar] [CrossRef]
- ISO 527-2:2012; Plastics-Determination of Tensile Properties-Part 2: Test Conditions for Moulding and Extrusion Plastics. International Organization for Standardization: Geneva, Switzerland, 2012.
- Wang, X.; Gao, X.; Zhang, Z.; Cheng, L.S.; Ma, H.P.; Yang, W.M. Advances in modifications and high-temperature applications of silicon carbide ceramic matrix composites in aerospace: A focused review. J. Eur. Ceram. Soc. 2021, 41, 4671. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Zhang, H.; Li, Z.H.; Chi, Q.G. Improved heat resistance and electrical properties of epoxy resins by introduction of bismaleimide. J. Electron. Mater. 2023, 52, 1865–1874. [Google Scholar] [CrossRef]
- Zhang, Z.; Galletly, J.R.; Guest, S.D.; Chen, D.D.; Yang, J.; Wu, H.P.; Jiang, S.F.; Chai, G.Z. Viscoelastic bistable behaviour of antisymmetric laminated composite shells with time-temperature dependent properties. Thin-Walled Struct. 2018, 122, 403–415. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, W.; Ye, W.; Li, S.Z.; Chu, F.K.; Hu, W.Z.; Song, L.; Hu, Y. Design of ultra-microporous COF for effectively enhancing the dielectric and fire resistance of bismaleimide based electronic packaging material. Chem. Eng. J. 2024, 481, 148409. [Google Scholar] [CrossRef]
Resin Type | Tensile Strength/MPa | Elastic Modulus/MPa | Elongation at Break/% |
---|---|---|---|
Epoxy | 61.39 | 3295 | 3.16 |
Bismaleimide | 69.18 | 2792 | 4.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Ji, X.; Sun, M.; Xiong, L.; Zhang, G.; Ding, W.; Li, J.; Jiang, S. Experimental Study on the Effects of Thermal Cycling and Ultraviolet Irradiation on Stable Characteristics of Carbon Fiber/Bismaleimide Polymer Composite Shells. Materials 2025, 18, 1942. https://doi.org/10.3390/ma18091942
Zhang Z, Ji X, Sun M, Xiong L, Zhang G, Ding W, Li J, Jiang S. Experimental Study on the Effects of Thermal Cycling and Ultraviolet Irradiation on Stable Characteristics of Carbon Fiber/Bismaleimide Polymer Composite Shells. Materials. 2025; 18(9):1942. https://doi.org/10.3390/ma18091942
Chicago/Turabian StyleZhang, Zheng, Xinyue Ji, Min Sun, Libin Xiong, Guang Zhang, Wenjie Ding, Jiquan Li, and Shaofei Jiang. 2025. "Experimental Study on the Effects of Thermal Cycling and Ultraviolet Irradiation on Stable Characteristics of Carbon Fiber/Bismaleimide Polymer Composite Shells" Materials 18, no. 9: 1942. https://doi.org/10.3390/ma18091942
APA StyleZhang, Z., Ji, X., Sun, M., Xiong, L., Zhang, G., Ding, W., Li, J., & Jiang, S. (2025). Experimental Study on the Effects of Thermal Cycling and Ultraviolet Irradiation on Stable Characteristics of Carbon Fiber/Bismaleimide Polymer Composite Shells. Materials, 18(9), 1942. https://doi.org/10.3390/ma18091942