Comparison of Hydrophilic Properties of Titanium and Zirconia Dental Implants’ Surfaces
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BIC | bone-to-implant contact; |
ZrO2 | zirconium dioxide; |
BTI | Biotechnology Institute. |
References
- Narcisi, E.M.; Tucker, M.R.; Bauer, R.E. Implant Treatment: Basic Concepts and Techniques. In Contemporary Oral and Maxillofacial Surgry, 7th ed.; Hupp, J.R., Edwards, E., III, Tucker, M.R., Eds.; Elsevier: Philadelphia, PA, USA, 2019; pp. 252–256. [Google Scholar]
- Thomas, C.; Bellani, D.; Piermatti, J.; Pitchumani, P.K. Systemic Factors Affecting Prognosis of Dental Implants. Dent. Clin. N. Am. 2024, 68, 555–570. [Google Scholar] [PubMed]
- Milleret, V.; Lienemann, P.S.; Gasser, A.; Bauer, S.; Ehrbar, M.; Wennerberg, A. Rational design and in vitro characterization of novel dental implant and abutment surfaces for balancing clinical and biological needs. Clin. Implant Dent. Relat. Res. 2019, 21, 15–24. [Google Scholar] [PubMed]
- Pabst, A.; Asran, A.; Luers, S.; Laub, M.; Holfeld, C.; Palarie, V.; Thiem, D.G.E.; Becker, P.; Hartmann, A.; Heimes, D.; et al. Osseointegration of a New, Ultrahydrophilic and Nanostructured Dental Implant Surface: A Comparative In Vivo Study. Biomedicines 2022, 10, 943. [Google Scholar] [CrossRef]
- Sartoretto, S.C.; Alves, A.T.; Resende, R.F.; Calasans-Maia, J.; Granjeiro, J.M.; Calasans-Maia, M.D. Early osseointegration driven by the surface chemistry and wettability of dental implants. J. Appl. Oral Sci. 2015, 23, 279–287. [Google Scholar]
- Sartoretto, S.C.; Calasans-Maia, J.A.; Costa, Y.O.D.; Louro, R.S.; Granjeiro, J.M.; Calasans-Maia, M.D. Accelerated Healing Period with Hydrophilic Implant Placed in Sheep Tibia. Braz. Dent. J. 2017, 28, 559–565. [Google Scholar]
- Toffoli, A.; Parisi, L.; Tatti, R.; Lorenzi, A.; Verucchi, R.; Manfredi, E.; Lumetti, S.; Macaluso, G.M. Thermal-induced hydrophilicity enhancement of titanium dental implant surfaces. J. Oral Sci. 2020, 62, 217–221. [Google Scholar]
- Zhu, Y.; Xu, A.; Zhou, C.; Wu, Y.; Lin, G.; He, F. The Influence of Storage in Saline or Irradiation by Ultraviolet on Surface Hydrophilicity of Implant and Osseointegration: An Experimental Study in Rabbits. J. Oral Implantol. 2023, 49, 70–78. [Google Scholar]
- Klein, M.O.; Bijelic, A.; Ziebart, T.; Koch, F.; Kämmerer, P.W.; Wieland, M.; Konerding, M.A.; Al-Nawas, B. Submicron scale-structured hydrophilic titanium surfaces promote early osteogenic gene response for cell adhesion and cell differentiation. Clin. Implant Dent. Relat. Res. 2013, 15, 166–175. [Google Scholar]
- Kunrath, M.F.; Vargas, A.L.; Sesterheim, P.; Teixeira, E.R.; Hubler, R. Extension of hydrophilicity stability by reactive plasma treatment and wet storage on TiO2 nanotube surfaces for biomedical implant applications. J. R. Soc. Interface 2020, 17, 20200650. [Google Scholar]
- Huang, J.; Zhang, X.; Yan, W.; Chen, Z.; Shuai, X.; Wang, A.; Wang, Y. Nanotubular topography enhances the bioactivity of titanium implants. Nanomedicine 2017, 13, 1913–1923. [Google Scholar]
- Galli, S.; Jimbo, R.; Naito, Y.; Berner, S.; Dard, M.; Wennerberg, A. Chemically modified titanium–zirconium implants in comparison with commercially pure titanium controls stimulate the early molecular pathways of bone healing. Clin. Oral Implant. Res. 2017, 28, 1234–1240. [Google Scholar] [CrossRef] [PubMed]
- Le Donne, A.; Tinti, A.; Amayuelas, E.; Kashyap, H.K.; Camisasca, G.; Remsing, R.C.; Meloni, S. Intrusion and extrusion of liquids in highly confining media: Bridging fundamental research to applications. Adv. Phys. 2022, 7, 1. [Google Scholar] [CrossRef]
- Gittens, R.A.; Scheidelar, L.; Rupp, F.; Hyzy, S.L.; Geis-Gerstorfer, J.; Schwartz, Z.; Boyan, B.D. A review on the wettability of dental implant surface II: Biological and clinical aspects. Acta Biometer. 2014, 10, 2907–2918. [Google Scholar]
- Erbil, H.Y. Evaporation of pure liquid sessile and spherical suspended drops: A review. Adv. Colloid. Interface Sci. 2012, 170, 68–86. [Google Scholar] [CrossRef]
- Kligman, S.; Ren, Z.; Chung, C.H.; Perillo, M.A.; Chang, Y.C.; Koo, H.; Zheng, Z.; Li, C. The Impact of Dental Implant Surface Modifications on Osseointegration and Biofilm Formation. J. Clin. Med. 2021, 10, 1641. [Google Scholar] [CrossRef]
- Aneksomboonpol, P.; Mahardawi, B.; Nan, P.N.; Laoharungpisit, P.; Kumchai, T.; Wongsirichat, N.; Aimjirakul, N. Surface structure characteristics of dental implants and their potential changes following installation: A literature review. J. Korean Assoc. Oral Maxillofac. Surg. 2023, 49, 114–124. [Google Scholar]
- Comisso, I.; Arias-Herrera, S.; Gupta, S. Zirconium dioxide implants as an alternative to titanium: A systematic review. J. Clin. Exp. Dent. 2021, 13, 511–519. [Google Scholar] [CrossRef]
- Oshida, Y.; Tuna, E.B.; Aktören, O.; Gençay, K. Dental Implant Systems. Int. J. Mol. Sci. 2010, 11, 1580–1678. [Google Scholar] [CrossRef]
- Held, U.; Rohner, D.; Rothamel, D. Early loading of hydrophilic titanium inserted in low-mineralized (D3 and D4) bone: One year results of a prospective clinical trial. Head Face Med. 2013, 9, 37. [Google Scholar] [CrossRef]
- Schwarz, F.; Herten, M.; Sager, M.; Wieland, M.; Dard, M.; Becker, J. Histological and immunohistochemical analysis of initial and early osseous integration at chemically modified and conventional SLA® titanium implants: Preliminary results of a pilot study in dogs. Clin. Oral Implant. Res. 2007, 18, 481–488. [Google Scholar]
- Rupp, F.; Scheideler, L.; Rehbein, D.; Axmann, D.; Geis-Gerstorfer, J. Roughness induced dynamic changes of wettability of acid etched titanium implant modifications. Biomaterials 2004, 25, 1429–1438. [Google Scholar] [PubMed]
- Wennerberg, A.; Albrektsson, T. Effects of titanium surface topography on bone integration: A systematic review. Clin. Oral Implant. Res. 2009, 20, 172–184. [Google Scholar]
- Zhao, G.; Schwartz, Z.; Wieland, M.; Rupp, F.; Geis-Gerstorfer, J.; Cochran, D.L.; Boyan, B.D. High surface energy enhances cell response to titanium substrate microstructure. J. Biomed. Mater. Res. A 2005, 74, 49–58. [Google Scholar] [PubMed]
- Anitua, E.; Tejero, R. Provisional Matrix Formation at Implant Surfaces-The Bridging Role of Calcium Ions. Cells 2022, 11, 3048. [Google Scholar] [CrossRef]
- Derks, J.; Schaller, D.; Kakansson, J.; Wennstrom, J.L.; Tomasi, C.; Berglund, T. Effectiveness of Implant Therapy analyzed in a Swedish Population: Prevalence of Peri-implantitis. J. Dent. Res. 2016, 95, 43–49. [Google Scholar]
- Ceruso, F.M.; Ieria, I.; Tallarico, M.; Meloni, S.M.; Lumbau, A.I.; Mastroianni, A.; Zotti, A.; Gargari, M. Comparison between Early Loaded Single Implants with Internal Conical Connection or Implants with Transmucosal Neck Design: A Non-Randomized Controlled Trial with 1-Year Clinical, Aesthetics, and Radiographic Evaluation. Materials 2022, 15, 511. [Google Scholar] [CrossRef]
- Marković, A.; Calvo-Guirado, J.L.; Lazić, Z.; Gomez-Moreno, G.; Ćalasan, D.; Guardia, J.; Čolic, S.; Aguilar-Salvatierra, A.; Gačić, B.; Delgado-Ruiz, R.; et al. Evaluation of primary stability of self-tapping and non-selftapping dental implants. A 12-week clinical study. Clin. Implant Dent. Relat. Res. 2013, 15, 341–349. [Google Scholar]
- Rupp, F.; Scheideler, L.; Eichler, M.; Geis-Gerstorfer, J. Wetting behavior of dental implants. Int. J. Oral Maxillofac. Implant. 2011, 26, 1256–1266. [Google Scholar]
- Kido, D.; Komatsu, K.; Suzumura, T.; Matsuura, T.; Cheng, J.; Kim, J.; Park, W.; Ogawa, T. Influence of Surface Contaminants and Hydeocarbon Pellicle on the Results of Wettability Measurements of Titanium. Int. J. Mol. Sci. 2023, 24, 14688. [Google Scholar]
- Ganeles, J.; Zöllner, A.; Jackowski, J.; ten Bruggenkate, C.; Beagle, J.; Guerra, F. Immediate and early loading of Straumann implants with a chemically modified surface (SLActive) in the posterior mandible and maxilla: 1-year results from a prospective multicenter study. Clin. Oral Implant Res. 2008, 19, 1119–1128. [Google Scholar]
- Aragoneses, J.; Valverde, N.L.; Fernandez-Dominguez, M.; Mena-Alvarez, J.; Rodriguez, C.; Gil, J.; Aragoneses, J.M. Relevant Aspects of Titanium and Zirconia Dental Implants for Their Fatigue and Osseointegration Behaviors. Materials. 2022, 15, 4036. [Google Scholar] [CrossRef]
- Ban, S. Classification and Properties of Dental Zirconia as Implant Fixtures and Suprerstructures. Materials 2021, 14, 4879. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Bauer, S.; Schlegel, K.A.; Neukam, F.W.; von der Mark, K.; Schmuki, P. TiO2 nanotube surfaces: 15 nm—An optimal length scale of surface topography for cell adhesion and differentiation. Small 2009, 5, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Lang, N.P.; Salvi, G.E.; Huynh-Ba, G.; Ivanovski, S.; Donos, N.; Bosshardt, D.D. Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin. Oral Implant Res. 2011, 22, 349–356. [Google Scholar] [CrossRef]
- Schwarz, F.; Ferrari, D.; Herten, M.; Mihatovic, I.; Wieland, M.; Sager, M.; Becker, J. Effects of surface hydrophilicity and microtopography on early stages of soft and hard tissue integration at non-submerged titanium implants: An immunohistochemical study in dogs. J. Periodontol. 2007, 78, 2171–2184. [Google Scholar]
- Buser, D.; Janner, S.F.; Wittneben, J.G.; Brägger, U.; Ramseier, C.A.; Salvi, G.E. 10-year survival and success rates of 511 titanium implants with a sandblasted and acid-etched surface: A retrospective study in 303 partially edentulous patients. Clin. Implant Dent. Relat. Res. 2012, 14, 839–851. [Google Scholar] [CrossRef]
- Oates, T.W.; Valderrama, P.; Bischof, M.; Nedir, R.; Jones, A.; Simpson, J.; Toutenburg, H.; Cochran, D.L. Enhanced implant stability with a chemically modified SLA surface: A randomized pilot study. Int. J. Oral. Maxillofac. Implant. 2007, 22, 755–760. [Google Scholar]
- Rupp, F.; Gittens, R.A.; Scheideler, L.; Marmur, A.; Boyan, B.D.; Schwartz, Z.; Geis-Gerstorfer, J. A review on the wettability of dental implant surfaces I: Theoretical and experimental aspects. Acta Biomater. 2014, 10, 2894–2906. [Google Scholar]
- Buser, D.; Sennerby, L.; De Bruyn, H. Modern implant dentistry based on osseointegration: 50 years of progress, current trends and open questions. Periodontology 2000 2017, 73, 7–21. [Google Scholar]
- Albrektsson, T.; Dahlin, C.; Jemt, T.; Sennerby, L.; Turri, A.; Wennerberg, A. Is marginal bone loss around oral implants the result of a provoked foreign body reaction? Clin. Implant Dent. Relat. Res. 2014, 16, 155–165. [Google Scholar]
Dental Implant | Material | Surface Treatment | Manufacturer |
Dimensions (Diameter × Length) | Diameters of the Apical Part |
---|---|---|---|---|---|
Alpha Bio MultiNeO | titanium | sandblasted and acid-etched TiO2 protective layer | Alpha Bio Tec Ltd., Modi’in, Israel | 5 × 13 mm | 3.3 mm |
Ankylos® | titanium | grit-blasted and high-temperature-etched | Dentsply Implants Manufacturing GmbH, Hanau, Germany | 7 × 14 mm | 5 mm |
Astra Tech OsseoSpeed™ TX | titanium | grit-blasted (TiO blast) and acid-etched | Dentsply Implants Manufacturing GmbH, Hanau, Germany | 5 × 17 mm | 2.5 mm |
Avinent | titanium |
surface with included calcium and phosphorus (detailed information unavailable) | Avinent Implant System S.L., Santpedor, Barcelona, Spain | 5 × 13 mm | 3.5 mm |
BTI UniCa | titanium | titanium surface modified with calcium ions (detailed information unavailable) | B.T.I. Biotechnology Institute S.L., Minano-Alava, Spain | 5.5 × 11.5 mm | 3.5 mm |
BTI Optima | titanium | without calcium ions (detailed information unavailable) | B.T.I. Biotechnology Institute S.L., Minano-Alava, Spain | 5.5 × 13 mm | 3.5 mm |
Bredent blueSKY | titanium | sandblasted and acid-etched | Bredent medical GmbH & Co., KG, Senden, Germany | 4.5 × 14 mm | 3 mm |
Bredent whiteSKY | zirconia | sandblasted | Bredent medical GmbH & Co., KG, Senden, Germany | 4.5 × 14 mm | 3 mm |
Dentium Implantatium | titanium | sandblasted with large grits and acid-etched | Dentium Co., Suwon, Republic of Korea | 5 × 14 mm | 3 mm |
GC Implant Aadva® Standard | titanium | sandblasting with high purity of alumina particles and acid etching | GCTech.Europe GmbH, Breckerfeld, Germany | 5 × 12 mm | 3 mm |
ICX-Active Liquid Implant | titanium | (detailed information unavailable) | Medemtis Medical GmbH, Bad Neuenahr-Ahrweiler, Germany | 4.8 × 15 mm | 2.5 mm |
Nobel Parallel™ CC TiUltra™ | titanium | anodized and preserved with protective layer | Nobel Biocare AB, Göteborg, Sweden | 5.5 × 15 mm | 2 mm |
Nobel Pearl™ Tapered WP | zirconia | ZARAFIL™ surface modified with sandblating and acid etching | Nobel Biocare AB, Göteborg, Sweden | 5.5 × 12 mm | 3 mm |
PRAMARF Sweden&Martina | titanium | sandblasted with zirconia and acit-etched with mineral acids | Sweden&Martina S.p.A. Due Carrare—Padova, Italy | 5 × 15 mm | 2 mm |
Straumann Roxolide® SLActive® | titanium | large-grit sandblasted and acid-etched | Institute Straumann AG, Basel, Switzerland | 4.8 × 12 mm | 3.5 mm |
Median (IQR) | p * (Between Measurements) | |||||||
---|---|---|---|---|---|---|---|---|
5 s | p † | 15 s | p † | 30 s | p † | |||
Ankylos | (1) | 37.1 (27.7–47.8) | <0.001 ║ | 25.6 (0–39.8) | <0.001 ** | 23.2 (0–36.8) | <0.001 †† | 0.08 |
Astra | (2) | 55.4 (54.2–57.5) | 54 (52.9–56.5) | 53.4 (49.1–55.2) | 0.16 | |||
BTI UniCA | (3) | 18.8 (16.9–20.7) | 0 (0–0) | 0 (0–0) | <0.001 ‡ | |||
Nobel TiUltra | (4) | 24.4 (20.8–26.2) | 15.1 (10.3–17.9) | 0 (0–0) | <0.001 § | |||
Straumann roxolid SLActive | (5) | 21.8 (20.8–22.3) | 19.8 (19.5–20.3) | 19.8 (0–20) | 0.001 ‡ | |||
Alpha Bio MultiNeO | (6) | 50.3 (47.8–54.1) | 41.0 (38.5–49.3) | 30.4 (28.2–42.5) | <0.001 § | |||
Avinent | (7) | 73.7 (73.4–74.8) | 72.4 (71.5–73.1) | 70.9 (70.3–71.8) | <0.001 § | |||
BTI Optima | (8) | 78.8 (78.3–79.6) | 78.6 (77.7–79.6) | 77.4 (76.9–77.9) | 0.002 §§ | |||
Bredent blueSKY | (9) | 96.8 (90.6–97.1) | 91.2 (88.4–91.5) | 88.9 (87.4–89.8) | <0.001 § | |||
Dentium Implantium | (10) | 58.3 (54.8–58.6) | 56.7 (53.2–57.7) | 55.4 (52.9–56.5) | <0.001 § | |||
GC Aadva | (11) | 50.1 (48.4–50.7) | 49.1 (47.9–50.2) | 47.1 (46.0–49.1) | <0.001 § | |||
ICX Active Liquid | (12) | 48.0 (47.6–49.5) | 45.3 (43.4–46.1) | 40.2 (38.8–42.7) | <0.001 § | |||
PRAMARF Sweden&Martina | (13) | 87.5 (86.0–90.9) | 86.8 (85.3–90.2) | 85.7 (84.2–89.3) | <0.001 § |
Median (IQR) | p * | |||
---|---|---|---|---|
5 s | 15 s | 30 s | ||
Nobel Pearl | 68.6 (67.5–70.04) | 67.3 (66.4–68.5) | 66.4 (65.3–67.1) | <0.001 ‡ |
Bredent whiteSKY | 82.6 (81.1–88.9) | 81.5 (79.9–87.2) | 80.5 (78.6–84.9) | <0.001 ‡ |
Difference § | 14.4 | 14.6 | 14.5 | |
95% CI | 11.8 do 19.6 | 12.2 do 19.7 | 12.2 do 19.6 | |
p † (between implant types) | <0.001 | <0.001 | <0.001 |
Median (IQR) | p * | |||
---|---|---|---|---|
5 s | 15 s | 30 s | ||
Nobel Pearl | 68.6 (67.5–70.04) | 67.3 (66.4–68.5) | 66.4 (65.3–67.1) | <0.001 ‡ |
Nobel TiUltra | 24.4 (20.8–26.2) | 15.1 (10.3–17.9) | 0 (0–0) | <0.001 § |
Difference | 43.9 | 52.5 | 65.8 | |
95% CI | 41.4 do 46.8 | 48.2 do 56.8 | 64.8 do 67.1 | |
p † (between implant types) | <0.001 | <0.001 | <0.001 |
Median (IQR) | p * | |||
---|---|---|---|---|
5 s | 15 s | 30 s | ||
Bredent whiteSKY | 82.6 (81.1–88.9) | 81.5 (79.9–87.2) | 80.5 (78.6–84.9) | <0.001 ‡ |
Brednet blueSKY | 96.8 (90.6–97.1) | 91.2 (88.4–91.5) | 88.9 (87.4–89.8) | <0.001 ‡ |
§ Difference | −10.9 | −9.03 | −7.9 | |
95% CI | −14.6 to −6.8 | −11.8 to −3.5 | −10.5 to −2.6 | |
p † (between implant types) | <0.001 | 0.001 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čivljak, T.; Ban, T.; Kopić, V.; Petrović, V.; Morelato, L.; Vuletić, M.; Gabrić, D. Comparison of Hydrophilic Properties of Titanium and Zirconia Dental Implants’ Surfaces. Materials 2025, 18, 1724. https://doi.org/10.3390/ma18081724
Čivljak T, Ban T, Kopić V, Petrović V, Morelato L, Vuletić M, Gabrić D. Comparison of Hydrophilic Properties of Titanium and Zirconia Dental Implants’ Surfaces. Materials. 2025; 18(8):1724. https://doi.org/10.3390/ma18081724
Chicago/Turabian StyleČivljak, Tadej, Ticijana Ban, Vlatko Kopić, Valentina Petrović, Luka Morelato, Marko Vuletić, and Dragana Gabrić. 2025. "Comparison of Hydrophilic Properties of Titanium and Zirconia Dental Implants’ Surfaces" Materials 18, no. 8: 1724. https://doi.org/10.3390/ma18081724
APA StyleČivljak, T., Ban, T., Kopić, V., Petrović, V., Morelato, L., Vuletić, M., & Gabrić, D. (2025). Comparison of Hydrophilic Properties of Titanium and Zirconia Dental Implants’ Surfaces. Materials, 18(8), 1724. https://doi.org/10.3390/ma18081724