Degradation Characteristics of Reed-Based PBAT Mulch and Their Effects on Plant Growth and Soil Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Sample Mulch Film
2.3. Compost Degradation Test
- ①
- The theoretical release of the CO2 was calculated as shown in Equation (1):
- ②
- The percentage of biodegradation was based on the cumulative amount of CO2 released, and the rate of biodegradation (Dt) was evaluated by using Equation (2):
2.3.1. FTIR Analysis
2.3.2. SEM Morphology
2.3.3. Transmittance of the Films
2.3.4. Elongation at the Break of the Material
2.4. Plant Cultivation
2.4.1. Effects of the PBAT and PBAT/RF Mulch Films on the Soil Properties
- (1)
- Determination of the basic physical and chemical properties of the soil
- (2)
- Measurement of the soil’s enzyme activity
2.4.2. Effect of the PBAT and PBAT/RF Mulch Films on Plant Growth
- (1)
- Determination of the germination rate
- (2)
- Measurement of plant height, root length, and total biomass
- (3)
- Determination of the chlorophyll content
3. Results and Discussion
3.1. Mulch Properties
3.2. Compost Degradation
3.2.1. Composting Biodegradation
3.2.2. Infrared Analysis of the PBAT and PBAT/RF Films
3.2.3. Electron Microscopic Analysis of the PBAT and PBAT/RF Mulch Films
3.3. Effects of the PBAT and PBAT/RF Mulch Films on the Soil’s Properties
3.3.1. PBAT and PBAT/RF Mulch Films’ Effects on pH
3.3.2. PBAT and PBAT/RF Mulch Films’ Effects on DOM
3.3.3. Effects of the PBAT and PBAT/RF Mulch Films on the Soil’s Total Nitrogen Contents
3.3.4. Effects of the PBAT and PBAT/RF Mulch Films on the Soil’s Enzyme Activities
3.4. Effects of the PBAT and PBAT/RF Mulch Films on Soybean Growth
3.4.1. Effects of the PBAT and PBAT/RF Mulch Films on the Germination of the Soybeans
3.4.2. Effects of the PBAT and PBAT/RF Mulch Films on Soybean Root Length, Plant Height, and Biomass
3.4.3. Effects of the PBAT and PBAT/RF Mulch Films on Plant Chlorophyll
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mo, F.; Wang, J.-Y.; Zhou, H.; Luo, C.-L.; Zhang, X.-F.; Li, X.-Y.; Li, F.-M.; Xiong, L.-B.; Kavagi, L.; Nguluu, S.N.; et al. Ridge-furrow plastic-mulching with balanced fertilization in rainfed maize (Zea mays L.): An adaptive management in east African Plateau. Agric. For. Meteorol. 2017, 236, 100–112. [Google Scholar] [CrossRef]
- Niu, L.B.; Bai, W.B.; Li, X.; Duan, F.Y.; Hou, P.; Zhao, R.L.; Wang, Y.H.; Zhao, M.; Li, S.K.; Song, J.Q. Effects of plastic film mulching on leaf metabolic profiles of maize in the loess plateau with two planting densities. Acta Agron. 2021, 47, 1551–1562. [Google Scholar]
- Yu, W.; Wang, C.Y.; Yi, Y.J.; Tan, Z.J.; Wang, H.Y.; Li, M.; Yang, Y.R. Research Progress of Biodegradable Mulch in China. Plast. Sci. Technol. 2019, 47, 10. [Google Scholar]
- Dong, H.Z.; Xu, Z.M. Status and management of cotton field film pollution. China Cotton 1992, 22–23. [Google Scholar]
- Zhou, J.H.; Zhu, H.W. Overview of the research and application of paper mulch. China Pulp Pap. 2002, 21, 3. [Google Scholar]
- Serrano-Ruiz, H.; Martin-Closas, L.; Pelacho, A.M. Biodegradable plastic mulches: Impact on the agricultural biotic environment. Sci. Total Environ. 2021, 750, 141228. [Google Scholar] [CrossRef]
- Díaz, A.; Katsarava, R.; Puiggalí, J. Synthesis, Properties and Applications of Biodegradable Polymers Derived from Diols and Dicarboxylic Acids: From Polyesters to Poly(ester amide)s. Int. J. Mol. Sci. 2014, 15, 7064–7123. [Google Scholar] [CrossRef]
- Sousa, A.F.; Vilela, C.; Fonseca, A.C.; Matos, M.; Freire, C.S.; Gruter, G.J.M.; Silvestre, A.J. Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: A tribute to furan excellency. Polym. Chem. 2015, 6, 6096. [Google Scholar]
- Wang, Z.; Li, M.; Flury, M.; Chang, Y.; Wang, J. Agronomic performance of polyethylene and biodegradable plastic film mulches in a maize cropping system in a humid continental climate. Sci. Total Environ. 2021, 786, 147460. [Google Scholar] [CrossRef]
- Nofar, M.; Maani, A.; Sojoudi, H.; Heuzey, M.C.; Carreau, P.J. Interfacial and rheological properties of PLA/PBAT and PLA/PBSA blends and their morphological stability under shear flow. J. Rheol. 2015, 59, 317–333. [Google Scholar] [CrossRef]
- Luo, G.; Jin, T.; Zhang, H.; Peng, J.; Zuo, N.; Huang, Y.; Han, Y.; Tian, C.; Yang, Y.; Peng, K.; et al. Deciphering the diversity and functions of plastisphere bacterial communities in plastic-mulching croplands of subtropical China. J. Hazard. Mater. 2021, 422, 126865. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Jin, T.; Zou, T.; Xu, L.; Xi, B.; Xu, D.; He, J.; Xiong, L.; Tang, C.; Peng, J. Current progress on plastic/microplastic degradation: Fact influences and mechanism. Environ. Pollut. 2022, 304, 119159. [Google Scholar] [CrossRef] [PubMed]
- Shafea, L.; Yap, J.; Beriot, N.; Felde, V.J.M.N.L.; Okoffo, E.D.; Enyoh, C.E.; Peth, S. Microplastics in agroecosystems: A review of effects on soil biota and key soil functions. J. Plant Nutr. Soil Sci. 2023, 186, 5–22. [Google Scholar] [CrossRef]
- Zantis, L.J.; Adamczyk, S.; Velmala, S.M.; Adamczyk, B.; Vijver, M.G.; Peijnenburg, W.; Bosker, T. Comparing the impact of microplastics derived from a biodegradable and a conventional plastic mulch on plant performance. Sci. Total Environ. 2024, 935, 173265. [Google Scholar] [CrossRef]
- Miles, C.; Devetter, L.; Ghimire, S.; Hayes, D.G. Suitability of Biodegradable Plastic Mulches for Organic and Sustainable Agricultural Production Systems. Hortscience 2017, 52, 10–15. [Google Scholar] [CrossRef]
- Qin, M.; Chen, C.; Song, B.; Shen, M.; Gong, J. A review of biodegradable plastics to biodegradable microplastics: Another ecological threat to soil environments? J. Clean. Prod. 2021, 312, 127816. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, X.; Zhang, S.; Zhang, S.; Sun, Y. Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil. Chemosphere 2020, 254, 126791. [Google Scholar] [CrossRef]
- Lian, Y.H.; Liu, W.T.; Shi, R.Y.; Wang, Q.; Li, J.T.; Zheng, Z.Q. Effect of polyethylene and polylactic acid microplastics on growth and physiological biochemistry and metabolism of soybeans. China Environ. Sci. 2022, 435, 129057. [Google Scholar] [CrossRef]
- Zhou, J.; Gui, H.; Banfield, C.C.; Wen, Y.; Zang, H.; Dippold, M.A.; Charlton, A.; Jones, D.L. The microplastisphere: Biodegradable microplastics addition alters soil microbial community structure and function. Soil Biol. Biochem. 2021, 156, 108211. [Google Scholar] [CrossRef]
- Muroi, F.; Tachibana, Y.; Kobayashi, Y.; Sakurai, T.; Kasuya, K.-I. Influences of poly(butylene adipate-co-terephthalate) on soil microbiota and plant growth. Polym. Degrad. Stab. 2016, 129, 338–346. [Google Scholar] [CrossRef]
- Susanna, S.; Laura, O.; Selene, C.; Aldo, V. Application of Biotests for the Determination of Soil Ecotoxicity after Exposure to Biodegradable Plastics. Front. Environ. Sci. 2016, 4, 68. [Google Scholar] [CrossRef]
- Fan, P.; Yu, H.; Xi, B.; Tan, W. A review on the occurrence and influence of biodegradable microplastics in soil ecosystems: Are biodegradable plastics substitute or threat? Environ. Int. 2022, 163, 107244. [Google Scholar] [CrossRef] [PubMed]
- Zantis, L.J.; Rombach, A.; Adamczyk, S.; Velmala, S.M.; Adamczyk, B.; Vijver, M.G.; Peijnenburg, W.; Bosker, T. Species-dependent responses of crop plants to polystyrene microplastics. Environ. Pollut. 2023, 335, 1.1–1.10. [Google Scholar] [CrossRef]
- Meng, F.; Yang, X.; Riksen, M.; Xu, M.; Geissen, V. Response of common bean (Phaseolus vulgaris L.) growth to soil contaminated with microplastics. Sci. Total Environ. 2021, 755, 142516. [Google Scholar] [CrossRef]
- Xu, J.; Feng, K.; Li, Y.; Xie, J.; Wang, Y.; Zhang, Z.; Hu, Q. Enhanced Biodegradation Rate of Poly(butylene adipate-co-terephthalate) Composites Using Reed Fiber. Polymers 2024, 16, 411. [Google Scholar] [CrossRef]
- GB/T 6672-2001; Plastics Film and Sheeting—Determination of Thickness by Mechanical Scanning. Standards Press of China: Beijing, China, 2001.
- GB/T19277-2011; Determination of the Ultimate Aerobic Biodegradability of Plastic Materials Under Controlled Composting Conditions-Method by Analysis of Evolved Carbon Dioxide-Part 1: General Method. Standards Press of China: Beijing, China, 2011.
- GB/T 1040.2-2006; Plastic—Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastic. Standards Press of China: Beijing, China, 2006.
- Sintim, H.Y.; Bary, A.I.; Hayes, D.G.; Wadsworth, L.C.; Flury, M. In situ degradation of biodegradable plastic mulch films in compost and agricultural soils. Sci. Total Environ. 2020, 727, 138668. [Google Scholar] [CrossRef]
- Giri, J.; Lach, R.; Grellmann, W.; Susan, A.B.H.; Saiter, J.; Henning, S.; Katiyar, V.; Adhikari, R. Compostable composites of wheat stalk micro- and nanocrystalline cellulose and poly(butylene adipate-co-terephthalate): Surface properties and degradation behavior. J. Appl. Polym. Sci. 2019, 136. [Google Scholar] [CrossRef]
- Xie, L.; Huang, J.; Xu, H.; Feng, C.; Na, H.; Liu, F.; Xue, L.; Zhu, J. Effect of large sized reed fillers on properties and degradability of PBAT composites. Polym. Compos. 2023, 44, 1752–1761. [Google Scholar] [CrossRef]
- Wang, B.; Wang, P.; Zhao, S.; Shi, H.; Zhu, Y.; Teng, Y.; Jiang, G.; Liu, S. Combined effects of microplastics and cadmium on the soil-plant system: Phytotoxicity, Cd accumulation and microbial activity. Environ. Pollut. 2023, 333, 121960. [Google Scholar] [CrossRef]
- Ma, J.; Cao, Y.; Fan, L.; Xie, Y.; Zhou, X.; Ren, Q.; Yang, X.; Gao, X.; Feng, Y. Degradation characteristics of polybutylene adipate terephthalic acid (PBAT) and its effect on soil physicochemical properties: A comparative study with several polyethylene (PE) mulch films. J. Hazard. Mater. 2023, 456, 131661. [Google Scholar] [CrossRef]
- Liu, H.; Yang, X.; Liu, G.; Liang, C.; Xue, S.; Chen, H.; Ritsema, C.J.; Geissen, V. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere 2017, 185, 907–917. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Sun, J.; Han, L.; Liu, W.; Ding, Y. Microplastics regulate soil microbial activities: Evidence from catalase, dehydrogenase, and fluorescein diacetate hydrolase. Environ. Res. 2024, 263, 120064. [Google Scholar] [CrossRef] [PubMed]
- De Silva, Y.S.K.; Rajagopalan, U.M.; Kadono, H.; Li, D. Effects of microplastics on lentil (Lens culinaris) seed germination and seedling growth. Chemosphere 2022, 303, 135162. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, R.; Dai, W.; Luan, Y.; Li, J. Impacts of Micro(nano)plastics on Terrestrial Plants: Germination, Growth, and Litter. Plants 2023, 12, 3554. [Google Scholar] [CrossRef]
- Żołnowski, A.C.; Rolka, E.; Kalinowski, Ł. Effects of Organic Amendments on the Morphology and Chemical Composition of Black Mustard (Sinapis nigra L.) Grown on Soil Contaminated with Copper. Agronomy 2024, 14, 995. [Google Scholar] [CrossRef]
- Wang, W.; Xie, Y.; Li, H.; Dong, H.; Li, B.; Guo, Y.; Wang, Y.; Guo, X.; Yin, T.; Liu, X. Responses of lettuce (Lactuca sativa L.) growth and soil properties to conventional non-biodegradable and new biodegradable microplastics. Environ. Pollut. 2024, 341, 122897. [Google Scholar]
Project | Type of Sample | Weight of Sample (g) | Weight of Compost (g) |
---|---|---|---|
CK | - | - | 300 |
CEL | cellulose | 50 | 300 |
RF | reed fibers | 50 | 300 |
PBAT | PBAT | 50 | 300 |
PBAT/RF | PBAT/RF | 50 | 300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhang, Q.; Huang, Y.; Xu, J.; Xie, J. Degradation Characteristics of Reed-Based PBAT Mulch and Their Effects on Plant Growth and Soil Properties. Materials 2025, 18, 1477. https://doi.org/10.3390/ma18071477
Wang Y, Zhang Q, Huang Y, Xu J, Xie J. Degradation Characteristics of Reed-Based PBAT Mulch and Their Effects on Plant Growth and Soil Properties. Materials. 2025; 18(7):1477. https://doi.org/10.3390/ma18071477
Chicago/Turabian StyleWang, Yipeng, Qiuxia Zhang, Yinghao Huang, Jia Xu, and Jixing Xie. 2025. "Degradation Characteristics of Reed-Based PBAT Mulch and Their Effects on Plant Growth and Soil Properties" Materials 18, no. 7: 1477. https://doi.org/10.3390/ma18071477
APA StyleWang, Y., Zhang, Q., Huang, Y., Xu, J., & Xie, J. (2025). Degradation Characteristics of Reed-Based PBAT Mulch and Their Effects on Plant Growth and Soil Properties. Materials, 18(7), 1477. https://doi.org/10.3390/ma18071477