Study on the Mechanical and Mesoscopic Properties of Rockfill Under Various Confining Pressures
Abstract
:1. Introduction
2. Conventional Triaxial Compression Test
2.1. Test Materials
2.2. Test Equipment and Scheme
2.3. Establishment of PFC2D Compression Model
3. Comparative Analysis of Simulation Results and Indoor Results
3.1. Failure Mode Analysis of Laboratory Test and Numerical Simulation
3.2. Analysis of Particle Breakage and Contact Force Chain Characteristics
4. Mesoscopic Motion of Particles and Crack Propagation Law
4.1. Numerical Simulation of Particle Motion Characteristics
4.2. Numerical Simulation of Particle Fracture Development Characteristics
5. Conclusions
- (1)
- The experimental results indicate a significant positive correlation between the deviatoric stress and confining pressure in dam rockfill materials. As the confining pressure increases from 100 kPa to 600 kPa, the shear strength of the laboratory specimens increases from 769.43 kPa to 2140.98 kPa, while the shear strength of the numerical simulation specimens rises from 572.39 kPa to 2059.26 kPa. Under different confining pressures, rockfill materials exhibit distinct mechanical behaviors: pronounced dilative behavior under low confining pressure and contractive behavior under high confining pressure. Additionally, particle breakage intensifies with increasing confining pressure, confirming that confining pressure is a key factor influencing the mechanical behavior of rockfill materials.
- (2)
- The weakening effect of particle breakage on the shear strength of rockfill is evident in both the experimental and numerical results, demonstrating that particle breakage significantly alters the grain composition and internal structure of rockfill. As the confining pressure increases, the breakage ratio rises from 4.25% to 8.33%, leading to a progressive reduction in shear strength. Particle breakage not only affects the macroscopic strength of rockfill but also significantly influences its mesoscopic mechanical response by altering the contact structure between particles. These changes ultimately result in a reduction in shear strength. Therefore, the combined effects of macroscopic strength degradation and mesoscopic contact structure evolution contribute to the overall mechanical response of rockfill materials.
- (3)
- The characteristics of the shear band and force chain distribution are influenced by confining pressure. Numerical simulations reveal that the shear band in rockfill exhibits an X-shaped failure pattern, and as confining pressure increases, the development of shear fractures is inhibited, leading to improved overall stability. Meanwhile, the number of force chains increases from 16,140 under low confining pressure to 18,932 under high confining pressure, indicating more frequent and compact particle contacts. The maximum contact force between particles increases from 12.19 kN to 59.83 kN, suggesting that confining pressure enhances interlocking among particles, thereby improving shear strength and overall stability.
- (4)
- The correlation between macroscopic and microscopic characteristics reveals that the mechanical behavior of rockfill under different confining pressures is deeply analyzed from the microscopic aspects of particle motion, crack distribution, and force chain characteristics. The research results reveal the influence mechanism of particle breakage, shear plane development, and force chain evolution on the macroscopic mechanical properties of rockfill materials, which provides an important reference direction for subsequent research.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Gao, Y.; Wang, Y.; Yu, Y.-Z.; Sun, X. Experimental Study on Compaction-Induced Anisotropic Mechanical Property of Rockfill Material. Front. Struct. Civ. Eng. 2021, 15, 109–123. [Google Scholar] [CrossRef]
- Zhou, G.; Wu, Q.; Li, S.; Wan, D.; You, J.; Song, D.; Zhao, J.; Zhang, X.; Shi, P.; Chu, P. Investigation of the Particle Crushing Characteristics of Stacked Stone Materials under Different Stress Path Conditions. Geomech. Geophys. Geo-Energy Geo-Resour. 2024, 10, 158. [Google Scholar] [CrossRef]
- Chen, L.; Bian, S.; Niu, X.; Zhao, Y. Investigation of Lade-Kim Plastic Potential Applicability under Various Stress Paths for Rockfill Materials. Adv. Mater. Sci. Eng. 2021, 2021, 5561427. [Google Scholar] [CrossRef]
- Chen, H.; Liu, D. DEM Analysis of Wetting Deformation Characteristics of Rockfill Material Considering the Influence of Different Compaction Levels. Powder Technol. 2025, 452, 120568. [Google Scholar] [CrossRef]
- Ning, F.; Liu, J.; Zou, D.; Kong, X.; Cui, G. Super-Large-Scale Triaxial Tests to Study the Effects of Particle Size on the Monotonic Stress–Strain Response of Rockfill Materials. Acta Geotech. 2024, 1–12. [Google Scholar] [CrossRef]
- Sadeghian, H.M.; Sadeghi, M.; Fakhimi, A. Particle Breakage, Deformation and Shear Strength of Conglomerate Rockfill Material: A Case Study of Masjed Soleyman Dam Cracking and Settlement. Bull. Eng. Geol. Environ. 2024, 83, 506. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, J.; Dai, X.; Ye, Z.; Wang, C.; Lu, S. Research on Permeability Characteristics and Gradation of Rockfill Material Based on Machine Learning. Water 2024, 16, 1135. [Google Scholar] [CrossRef]
- Li, C.; Zhang, J.; Mei, X.; Zhou, J. Supervised Intelligent Prediction of Shear Strength of Rockfill Materials Based on Data Driven and a Case Study. Transp. Geotech. 2024, 45, 101229. [Google Scholar] [CrossRef]
- Du, H.; Zhang, S.; Ma, W.; Mu, Y.; Cheng, T.; Zhang, Y. Experimental Study on the Characteristics of the Failure Strain Energy Density of Undisturbed Ice-Rich Frozen Clay. Atmosphere 2023, 14, 203. [Google Scholar] [CrossRef]
- Wang, S.; Wang, L.; Zhang, W.; Lin, S.; Zhang, Y.; Yang, Y.; Wang, P.; Chen, L. Fracture Mode of Water-Immersed Sandstone Based on Micro CT and Statistical Damage Model under Triaxial Compression. Eng. Fract. Mech. 2025, 315, 110781. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Z.; Ye, Q.; Wei, X. Particle Breakage and Deformation Behavior of Carbonate Sand under Drained and Undrained Triaxial Compression. Int. J. Geomech. 2020, 20, 04020012. [Google Scholar] [CrossRef]
- Hu, F.; Li, Z.; Tian, Y.; Hu, R. Failure Patterns and Morphological Soil–Rock Interface Characteristics of Frozen Soil–Rock Mixtures under Compression and Tension. Appl. Sci. 2021, 11, 461. [Google Scholar] [CrossRef]
- Guo, W.; Huang, Y.; Fourie, A.; Wu, Y. Mathematical Model Revealing the Evolution of Particle Breakage and Particle-Size Distribution for Rockfill during Triaxial Shearing. Eur. J. Environ. Civ. Eng. 2021, 25, 893–908. [Google Scholar] [CrossRef]
- Luo, M.; Zhang, J.; Liu, X.; Zhong, L. Particle Breakage Model for Granular Geomaterials Considering Stress Paths. Int. J. Geomech. 2023, 23, 04023223. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, C.; Zhu, K.; Shen, P. Macroscopic Behaviour and Mesoscopic Mechanism of Shear Strength Characteristics of Pile-Soil Interface under Cyclic Loading. Ocean Eng. 2024, 297, 116998. [Google Scholar] [CrossRef]
- Yan, S.; Chi, S.; Jia, Y.; Wang, J.; Shao, X.; Feng, W. Effect of Particle Size and Loading Frequency on the Small-Strain Modulus of Rockfill Materials: A DEM Study. Powder Technol. 2025, 452, 120544. [Google Scholar] [CrossRef]
- Zhou, X.; Chi, S.; Jia, Y.; Guo, Y.; Feng, W.; Yan, S.; Wang, T.; Ma, X. Microscopic Simulation on Triaxial Compression Creep of Rockfill Based on Subcritical Crack Propagation Theory. Powder Technol. 2025, 449, 120403. [Google Scholar] [CrossRef]
- Yu, Z.; Jing, H.; Gao, Y.; Wang, A.; Meng, Y.; Chen, W.; Wu, J. Study on Reinforcing Mechanism of Carbon Nanotubes on Tensile Behavior of Gangue Cemented Rockfill. Constr. Build. Mater. 2024, 411, 134420. [Google Scholar] [CrossRef]
- Han, H.; Li, J.; Shi, J.; Yang, C. Influence of Scale Effect on Strength and Deformation Characteristics of Rockfill Materials. Materials 2022, 15, 5467. [Google Scholar] [CrossRef]
- Zhao, F.; Chi, S. Characteristics of Particle Breakage and Constitutive Model of Coarse Granular Material Incorporating Gradation Evolution. Géotechnique 2021, 71, 937–950. [Google Scholar] [CrossRef]
- Li, J.; Huang, C.; Li, W.; Yu, H.; Ouyang, S.; Guo, Y.; Shi, Y.; Zhu, L. The 3D Reconstruction of a Digital Model for Irregular Gangue Blocks and Its Application in PFC Numerical Simulation. Eng. Comput. 2021, 38 (Suppl. S5), 4617–4627. [Google Scholar] [CrossRef]
- Haeri, H.; Sarfarazi, V.; Marji, F.M. Numerical Simulation of the Effect of Confining Pressure and Tunnel Depth on the Vertical Settlement Using Particle Flow Code (With Direct Tensile Strength Calibration in PFC Modeling). Smart Struct. Syst. 2020, 25, 433–446. [Google Scholar] [CrossRef]
- Yang, Z.; Cai, H.; Dai, M.; Wang, T.; Li, M. Mechanical Behavior and Rock Breaking Mechanism of Shield Hob Based on Particle Flow Code (PFC) Method. Geotech. Geol. Eng. 2022, 41, 353–370. [Google Scholar] [CrossRef]
- Han, H.; Ma, Y.; He, W.; Yang, W.; Fu, X. Numerical Simulation of Rockfill Materials Based on Fractal Theory. Appl. Sci. 2021, 12, 289. [Google Scholar] [CrossRef]
- Jing, W.; Cao, Z.; Jing, L.; Jin, R.; Rong, C. Crack Initiation and Propagation Mechanism of Flawed Rock Mass Based on Improved Maximum Distortion Energy Theory and PFC Numerical Simulation. J. Fail. Anal. Prev. 2024, 24, 1799–1813. [Google Scholar] [CrossRef]
- Wan, X.; Zhou, H.; Zhou, F.; Zhu, J.; Shahab, K.M. Mesoscopic Shear Evolution Characteristics of Frozen Soil-Concrete Interface. Cold Reg. Sci. Technol. 2025, 229, 104342. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, H.; Xie, S.; Ding, X.; He, D.; Yong, W.; Gao, F. Effect of Joint Microcharacteristics on Macroshear Behavior of Single-Bolted Rock Joints by the Numerical Modeling with PFC. Environ. Earth Sci. 2022, 81, 276. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Yang, C.; Zhang, L.; Li, Z.; Huang, T. Acoustic Emission Response Characteristics and Numerical Simulation of Soil Failure under Uniaxial Compression. J. Appl. Geophys. 2024, 222, 105310. [Google Scholar] [CrossRef]
- Bai, Y.; Li, X.; Yang, W.; Xu, Z.; Lv, M. Multiscale Analysis of Tunnel Surrounding Rock Disturbance: A PFC3D-FLAC3D Coupling Algorithm with the Overlapping Domain Method. Comput. Geotech. 2022, 147, 104709. [Google Scholar] [CrossRef]
- He, Z.M.; Huang, C.; Liu, Y.X. Study on Mechanical Properties and Mesoscopic Simulation of Coarse-Grained Soil Subgrade. J. Cent. South Univ. (Sci. Technol.) 2020, 51, 1116–1124. [Google Scholar] [CrossRef]
- Xing, K.; Zhou, Z.; Yang, H.; Liu, B. Macro-Meso Freeze-Thaw Damage Mechanism of Soil-Rock Mixtures with Different Rock Contents. Int. J. Pavement Eng. 2020, 21, 9–19. [Google Scholar] [CrossRef]
- Zhang, X.; Luo, K.; Wang, T.; Jiang, M.; Feng, J.; Mei, G. Microscopic Mechanism of Coarse-Grained Soil under Triaxial Test Based on PFC-FLAC Coupling Method. Soil. Mech. Found. Eng. 2023, 60, 323–329. [Google Scholar] [CrossRef]
- GB/T 50123-2019; Standard for Geotechnical Testing Methods. National Standard of the People’s Republic of China: Beijing, China, 2019.
- Pan, J.; Sun, X. Research Progress on Scaling Methods and Effects for Coarse-Grained Soil. J. Yangtze River Sci. Res. Inst. 2023, 40, 1–8. [Google Scholar] [CrossRef]
- GB/T 50213-2019; Standard for Soil Test Methods. National Standard of the People’s Republic of China: Beijing, China, 2019.
- Zhou, L.; Sarfarazi, V.; Haeri, H.; Shahbazian, A.; Moayedi Far, A.; Fatehi Marji, M. Rock Joint Filling Breakage under Three Different Instant Loading Conditions: Physical Test and PFC Simulation. Comput. Part. Mech. 2024, 12, 183–204. [Google Scholar] [CrossRef]
- Song, Z.; Li, X.; Fan, S.; Shen, X.; Wang, K.; Zhang, M.; Pu, J. Mesoscopic Analysis of Creep Characteristics of Hard Tuff Considering Damage. Arch. Civ. Mech. Eng. 2024, 24, 72. [Google Scholar] [CrossRef]
- Wu, L.; Zhu, Y.; Bai, H.; Feng, Y.; Li, H.; Su, C. Correlation Study on Macro-Mesoscopic Parameters of Sandstone Particle Flow Parallel Bond Model. J. Min. Sci. Technol. 2023, 8, 487–501. [Google Scholar] [CrossRef]
- Jin, W.; Yang, X.; Yang, F.C.; Shi, J.Q. Particle Breakage of Ultra-High Dam Rockfills under Drained Shearing. Granul. Matter 2024, 26, 55. [Google Scholar] [CrossRef]
- Wei, S.W.; Tao, Y.Y. Numerical Study of Dynamic Fracture Behaviors of Rock Containing Double Pre-Existing Flaws under Different Confined Stress and Flaw Geometry. Eur. J. Environ. Civ. Eng. 2023, 27, 3363–3379. [Google Scholar] [CrossRef]
Rockfill | Percentage Content of Rockfill Particle Group/% | ||||||
---|---|---|---|---|---|---|---|
<2 mm | 2–5 mm | 5–10 mm | 10–20 mm | 20–40 mm | 40–60 mm | 60–100 mm | |
prototype gradation | 14.59 | 14.64 | 17.52 | 11.48 | 14.86 | 13.40 | 13.51 |
scale gradation | 14.59 | 14.64 | 21.65 | 14.19 | 18.37 | 16.56 | - |
Name | Parameter | Name | Parameter |
---|---|---|---|
Specimen size | Φ300 × 600 mm | Displacement measurement accuracy | 0.3% F.S |
Maximum axial static load | 1500 kN | Pore water pressure | −0.1~3.0 MPa |
Axial force resolution | 0.1 kN | Back pressure | 0~1.0 MPa |
Surrounding pressure | 0~3 MPa | Pressure measurement accuracy | ±0.5% F.S |
Displacement measurement range | 0~300 mm | Axial loading rate (strain-type) | 0.01~3.0 mm/min |
Displacement resolution | 0.001 mm | Hydraulic oil used | N46 anti-wear hydraulic oil |
Test Classification | Coarse Grain Content P5/% | Natural Moisture Content w/% | Density ρ/(g·cm−3) | Confining Pressure σ/kPa | |
---|---|---|---|---|---|
drainage by consolidation | 70.79 | 3.45 | 2.32 | 100 kPa 300 kPa 500 kPa | 200 kPa 400 kPa 600 kPa |
Parameter | Numerical Value | Parameter | Numerical Value |
---|---|---|---|
coarse grain content P5/% | 70.79 | parallel bond cohesive force c/kPa | 25.5 |
density ρ/(g/cm3) | 2.32 | angle of internal friction φ/◦ | 31 |
effective modulus E/kPa | 5.0 × 108 | strain rate ε˙ | 0.1 |
stiffness ratio k | 0.3 | coefficient of restitution e | 0.4 |
coefficient of friction µ | 0.5 | gravity g/(m/s2) | 9.8 |
Test Classification | Coarse Grain Content P5/% | Confining Pressure σ/kPa | The Content of Each Particle Group with Different Particle Size (mm)/% | Percent Reduction | |||||
---|---|---|---|---|---|---|---|---|---|
<2 | 2~5 | 5~10 | 10~20 | 20~40 | 40~60 | ||||
conventional triaxial | 70.79% | 100 | 16.38 | 14.48 | 21.26 | 14.50 | 18.39 | 14.99 | 4.25 |
200 | 16.61 | 14.41 | 21.20 | 14.55 | 18.46 | 14.77 | 4.95 | ||
300 | 16.79 | 14.34 | 21.09 | 14.74 | 18.52 | 14.52 | 5.81 | ||
400 | 17.25 | 14.29 | 21.12 | 14.85 | 18.20 | 14.29 | 6.65 | ||
500 | 17.51 | 14.19 | 21.05 | 15.05 | 18.18 | 14.02 | 7.57 | ||
600 | 17.85 | 14.13 | 21.01 | 15.09 | 18.13 | 13.79 | 8.33 |
Coarse Grain Content P5/% | Confining Pressure σ/kPa | Number of Contact Force Chains N | Maximum Contact Force/kN | Shearing Strength/kPa |
---|---|---|---|---|
70.79 | 100 | 16,140 | 12.19 | 769.43 |
200 | 17,240 | 18.79 | 1016.99 | |
300 | 17,675 | 36.86 | 1309.98 | |
400 | 17,943 | 43.19 | 1610.70 | |
500 | 18,475 | 49.19 | 1828.87 | |
600 | 18,932 | 59.83 | 2140.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ou, B.; Chi, H.; Wang, Z.; Qiu, H.; Li, J.; Feng, Y.; Fu, S. Study on the Mechanical and Mesoscopic Properties of Rockfill Under Various Confining Pressures. Materials 2025, 18, 1316. https://doi.org/10.3390/ma18061316
Ou B, Chi H, Wang Z, Qiu H, Li J, Feng Y, Fu S. Study on the Mechanical and Mesoscopic Properties of Rockfill Under Various Confining Pressures. Materials. 2025; 18(6):1316. https://doi.org/10.3390/ma18061316
Chicago/Turabian StyleOu, Bin, Haoquan Chi, Zixuan Wang, Haoyu Qiu, Jiahao Li, Yanming Feng, and Shuyan Fu. 2025. "Study on the Mechanical and Mesoscopic Properties of Rockfill Under Various Confining Pressures" Materials 18, no. 6: 1316. https://doi.org/10.3390/ma18061316
APA StyleOu, B., Chi, H., Wang, Z., Qiu, H., Li, J., Feng, Y., & Fu, S. (2025). Study on the Mechanical and Mesoscopic Properties of Rockfill Under Various Confining Pressures. Materials, 18(6), 1316. https://doi.org/10.3390/ma18061316