Influence of Pozzolanic Additives on the Structure and Properties of Ultra-High-Performance Concrete
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Temperature Monitoring Results
3.2. Physical and Mechanical Properties
3.3. Microstructure Analysis
3.4. Water Absorption and Sorbtivity
3.5. Pore Structure and Resistance to Freeze–Thaw Cycles
3.6. Results of X-Ray Analysis
4. Conclusions
- Microsilica, having the highest pozzolanic activity and the largest specific surface area, accelerates hydration the most, whereas milled glass inhibits hydration due to the slower dissolution of the particles and insufficient content of dissolved sodium. Metakaolin, added as a waste product from expanded glass granule manufacturing, also inhibits hydration.
- In spite of the insignificant drop in density (up to 2%), the highest compressive strength was recorded in the samples containing microsilica and the binary additive. At 28 days, the compressive strength of modified samples in comparison with the control sample increased by 8.6% and 2.3% due to the density and the homogeneous structure of concrete. These samples had the lowest total porosity and the highest closed porosity due to the high pozzolanic activity of microsilica. The freeze–thaw resistance prediction coefficient Kf value was also the highest in these compositions. A high Kf value was also observed in the samples with the binary additive and with metakaolin used alone.
- XRD analysis showed that all compositions of concrete contained the same minerals; however, the lowest intensity of portlandite peaks was observed in the samples containing microsilica, metakaolin, and the binary additive metakaolin + microsilica.
- The use of the binary pozzolanic additive is recommended, primarily because metakaolin is a waste product that inhibits the formation of harmful pores in concrete, improves durability, and, above all, reduces the cost of concrete. Microsilica enhances the performance of concrete by accelerating cement hydration and also filling the voids between cement particles.
- This research demonstrates the benefits of using binary pozzolanic additive, which consists of waste metakaolin and microsilica, to optimise the durability of UHPC by analysing the physical and mechanical properties, and the microstructure, of concrete. Research should be continued by replacing a larger amount of cement with SCMs, in order to test the economic and ecological efficiency for the environment, while conducting durability tests under different environmental conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
UHPC | Ultra-high-performance concrete |
C-S-H | Calcium silicate hydrates |
C-A-S-H | Calcium aluminium silicate hydrate |
SCM | Supplementary cementitious materials |
MS | Microsilica |
MK | Metakaolin |
MQ | Milled quartz sand |
MG | Milled glass |
References
- Damme, H. Concrete material science: Past, present, and future innovations. Cem. Concr. Res. 2018, 112, 5–24. [Google Scholar] [CrossRef]
- Yan, P.; Chen, B.; Zhu, M.; Meng, X. Study on mechanical properties and microstructure of green ultra-high performance concrete prepared by recycling waste glass powder. J. Build. Eng. 2024, 82, 108206. [Google Scholar] [CrossRef]
- Li, J.; Wu, Z.; Shi, C.; Yuan, Q.; Zhang, Z. Durability of ultra-high performance concrete–A review. Constr. Build. Mater. 2020, 255, 119296. [Google Scholar] [CrossRef]
- Amran, M.; Huang, S.S.; Onaizi, A.M.; Makul, N.; Abdelgader, H.S.; Ozbakkaloglu, T. Recent trends in ultra-high performance concrete (UHPC): Current status, challenges, and future prospects. Constr. Build. Mater. 2022, 352, 129029. [Google Scholar] [CrossRef]
- Du, J.; Meng, W.; Khayat, K.H.; Bao, Y.; Guo, P.; Lyu, Z.; Wang, H. New development of ultra-high-performance concrete (UHPC). Compos. Part B Eng. 2021, 224, 109220. [Google Scholar] [CrossRef]
- Azmee, N.M.; Shafiq, N. Ultra-high performance concrete: From fundamental to applications. Case Stud. Constr. Mater. 2018, 9, e00197. [Google Scholar] [CrossRef]
- Shah, H.A.; Yuan, Q.; Photwichai, N. Use of materials to lower the cost of ultra-high-performance concrete–A review. Constr. Build. Mater. 2022, 327, 127045. [Google Scholar] [CrossRef]
- Yu, R.; Spiesz, P.H.J.H.; Brouwers, H.J.H. Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses. Cem. Concr. Compos. 2015, 55, 383–394. [Google Scholar] [CrossRef]
- Hamada, H.M.; Shi, J.; Abed, F.; Al Jawahery, M.S.; Majdi, A.; Yousif, S.T. Recycling solid waste to produce eco-friendly ultra-high performance concrete: A review of durability, microstructure and environment characteristics. Sci. Total Environ. 2023, 876, 162804. [Google Scholar] [CrossRef]
- Alsalman, A.; Dang, C.N.; Martí-Vargas, J.R.; Hale, W.M. Mixture-proportioning of economical UHPC mixtures. J. Build. Eng. 2020, 27, 100970. [Google Scholar] [CrossRef]
- Alsalman, A.; Dang, C.N.; Hale, W.M. Development of ultra-high performance concrete with locally available materials. Constr. Build. Mater. 2017, 133, 135–145. [Google Scholar] [CrossRef]
- Arora, A.; Almujaddidi, A.; Kianmofrad, F.; Mobasher, B.; Neithalath, N. Material design of economical ultra-high performance concrete (UHPC) and evaluation of their properties. Cem. Concr. Compos. 2019, 104, 103346. [Google Scholar] [CrossRef]
- Li, P.P.; Yu, Q.L.; Brouwers, H.J.H. Effect of coarse basalt aggregates on the properties of Ultra-high Performance Concrete (UHPC). Constr. Build. Mater. 2018, 170, 649–659. [Google Scholar] [CrossRef]
- Wille, K.; Naaman, A.E.; Parra-Montesinos, G.J. Ultra-High Performance Concrete with Compressive Strength Exceeding 150 MPa (22 ksi): A Simpler Way. ACI Mater. J. 2011, 108, 46–54. [Google Scholar] [CrossRef]
- Alkaysi, M.; El-Tawil, S. Effects of variations in the mix constituents of ultra high performance concrete (UHPC) on cost and performance. Mater. Struct. 2016, 49, 4185–4200. [Google Scholar] [CrossRef]
- Wu, F.; Xu, L.; Chi, Y.; Zeng, Y.; Deng, F.; Chen, Q. Compressive and flexural properties of ultra-high performance fiber-reinforced cementitious composite: The effect of coarse aggregate. Compos. Struct. 2020, 236, 111810. [Google Scholar] [CrossRef]
- Luan, C.; Wu, Z.; Han, Z.; Gao, X.; Zhou, Z.; Du, P.; Wu, F.; Du, S.; Huang, Y. The effects of calcium content of fly ash on hydration and microstructure of ultra-high performance concrete (UHPC). J. Clean. Prod. 2023, 415, 137735. [Google Scholar] [CrossRef]
- Lam, C.S.; Poon, C.S.; Chan, D. Enhancing the performance of precast concrete blocks by incorporating waste glass- ASR consideration. Cem. Concr. Compos. 2007, 29, 616–625. [Google Scholar] [CrossRef]
- Shahidan, B.A.; Tayeh, A.A.; Jamaludin, N.A.A.S.; Bahari, S.S.; Mohd, N.; Zuki, A.; Khalid, F.S. Physical and mechanical properties of self-compacting concrete containing superplasticizer and metakaolin. IOP Conf. Ser. Mater. Sci. Eng. 2017, 271, 012004. [Google Scholar] [CrossRef]
- Tawfik, T.A.; Metwally, K.A.; EL-Beshlawy, S.A.; Al Saffar, D.M.; Tayeh, B.A.; Soltan, H.H. Exploitation of the nanowaste ceramic incorporated with nano silica to improve concrete properties. J. King Saud Univ. Eng. Sci. 2021, 33, 581–588. [Google Scholar] [CrossRef]
- Akalin, O.; Akay, K.U.; Sennaroglu, B. Using glass sand as an alternative for quartz sand in UHPC. Constr. Build. Mater. 2017, 145, 243–252. [Google Scholar] [CrossRef]
- Dhinakaran, G.; Kumar, K.R.; Vijayarakhavan, S. Strength and durability characteristics of ternary blend and lightweight HPC. Constr. Build. Mater. 2017, 134, 727–736. [Google Scholar] [CrossRef]
- Omran, D.; Harbec, A.; Tagnit-Hamou, R.; Gagne, R. Production of roller-compacted concrete using glass powder: Field study. Constr. Build. Mater. 2017, 133, 450–458. [Google Scholar] [CrossRef]
- Omran, A.F.; Tagnit-Hamou, A. Performance of glass-powder concrete in field applications. Constr. Build. Mater. 2016, 109, 84–95. [Google Scholar] [CrossRef]
- Omran, A.F.; Morin, E.D.; Harbec, D.; Tagnit-Hamou, A. Long-term performance of glass-powder concrete in large-scale field applications. Constr. Build. Mater. 2017, 135, 43–58. [Google Scholar] [CrossRef]
- AL-Zubaid, A.B.; Shabeeb, K.M.; Ali, A.I. Study the effect of recycled glass on the mechanical properties of green concrete. Energy Proc. 2017, 119, 680–692. [Google Scholar] [CrossRef]
- Ahmad, S.A.; Ahmed, H.U.; Rafiq, S.K.; Mahmood, K.O.F.; Rostam, K.J.; Jafer, F.S. A Comprehensive Exploration on the Effect of Waste Glass Powder as a Partial Replacement of Cement in Mortar: A Review, Analysis, and Modeling Investigation. Arab. J. Sci. Eng. 2023, 49, 5721–5748. [Google Scholar] [CrossRef]
- Bisht, K.; Ramana, P.V. Evaluation of mechanical and durability properties of crumb rubber concrete. Constr. Build. Mater. 2017, 155, 811–817. [Google Scholar] [CrossRef]
- Bisht, K.; Ramana, P.V. Sustainable production of concrete containing discarded beverage glass as fine aggregate. Constr. Build. Mater. 2018, 177, 116–124. [Google Scholar] [CrossRef]
- Afshinnia, K.; Rangaraju, P.R. Impact of combined use of ground glass powder and crushed glass aggregate on selected properties of Portland cement concrete. Constr. Build. Mater. 2016, 117, 263–272. [Google Scholar] [CrossRef]
- Kamali, M.; Ghahremaninezhad, A. Effect of glass powders on the mechanical and durability properties of cementitious materials. Constr. Build. Mater. 2015, 98, 407–416. [Google Scholar] [CrossRef]
- Ahmad, J.; Zhou, Z.; Usanova, K.I.; Vatin, N.I.; El-Shorbagy, M.A. A step towards concrete with partial substitution of waste glass (WG) in concrete: A review. Materials 2022, 15, 2525. [Google Scholar] [CrossRef]
- Idir, R.; Cyr, M.; Tagnit-Hamou, A. Use of waste glass as powder and aggregate in cement-based materials. In Proceedings of the SBEIDCO—1st International Conference on Sustainable built Environment Infracstructure in Developing Countries ENSET, Oran, Algeria, 12–14 October 2009; pp. 109–116. [Google Scholar]
- Shen, P.; Lu, L.; Chen, W.; Wang, F.; Hu, S. Efficiency of metakaolin in steam cured high strength concrete. Constr. Build. Mater. 2017, 152, 357–366. [Google Scholar] [CrossRef]
- Pillay, D.L.; Olalusi, O.B.; Kiliswa, M.W.; Awoyera, P.O.; Kolawole, J.T.; Babafemi, A.J. Engineering performance of metakaolin based concrete. Clean. Eng. Technol. 2022, 6, 100383. [Google Scholar] [CrossRef]
- Singh, H.; Siddique, R. Long term durability assessment of self-compacting concrete made with crushed recycled glass and metakaolin. Constr. Build. Mater. 2023, 400, 132656. [Google Scholar] [CrossRef]
- Güneyisi, E.; Gesoglu, M.; Mermerdas, K. Improving strength, drying shrinkage, and pore structure of concrete using metakaolin. Mater. Struct. 2008, 41, 937–949. [Google Scholar] [CrossRef]
- Muralikrishnan, B.; Saravanan, J. Effect of Addition of Alccofine on the Compressive Strength of Cement Mortar Cubes. Emerg. Sci. J. 2021, 5, 155–170. [Google Scholar] [CrossRef]
- Fernandez, R.; Martirena Hernández, F.; Scrivener, K. The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cem. Concr. Res. 2011, 41, 113–122. [Google Scholar] [CrossRef]
- Paiva, H.; Velosa, A.; Cachim, P.; Ferreira, V.M. Effect of metakaolin dispersion on the fresh and hardened state properties of concrete. Cem. Concr. Res. 2012, 52, 607–612. [Google Scholar] [CrossRef]
- Hassan, A.A.A.; Lachemi, M.; Hossain, K.M.A. Effect of metakaolin and silica fume on the durability of self-consolidating concrete. Cem. Concr. Compos. 2012, 34, 801–807. [Google Scholar] [CrossRef]
- Menhosh, A.; Wang, Y.; Wang, Y.; Augusthus-Nelson, L. Long term durability properties of concrete modified with metakaolin and polymer admixture. Constr. Build. Mater. 2018, 172, 41–51. [Google Scholar] [CrossRef]
- Chu, S.H.; Chen, J.J.; Li, L.G.; Ng, P.L.; Kwan, A.K.H. Roles of packing density and slurry film thickness in synergistic effects of metakaolin and silica fume. Powder Technol. 2021, 387, 575–583. [Google Scholar] [CrossRef]
- Alexander, M.G.; Magee, B.J. Durability performance of concrete containing condensed silica fume. Cem. Concr. Res. 1999, 29, 917–922. [Google Scholar] [CrossRef]
- Wu, Z.; Shi, C.; Khayat, K.H. Influence of silica fume content on microstructure development and bond to steel fiber in ultra-high strength cement-based materials (UHSC). Cem. Concr. Compos. 2016, 71, 97–109. [Google Scholar] [CrossRef]
- Juenger, M.C.G.; Siddique, R. Recent advances in understanding the role of supplementary cementitious materials in concrete. Cem. Concr. Res. 2015, 78, 71–80. [Google Scholar] [CrossRef]
- Chu, S.H.; Kwan, A.K.H. Mixture design of self-levelling ultra-high performance FRC. Constr. Build. Mater. 2019, 228, 116761. [Google Scholar] [CrossRef]
- Yalçınkaya, Ç.; Çopuroglu, O. Hydration heat, strength and microstructure characteristics of UHPC containing blast furnace slag. J. Build. Eng. 2021, 34, 101915. [Google Scholar] [CrossRef]
- Yu, R.; Spiesz, P.; Brouwers, H.J.H. Effect of nano-silica on the hydration and microstructure development of Ultra-High-Performance Concrete (UHPC) with a low binder amount. Constr. Build. Mater. 2014, 65, 140–150. [Google Scholar] [CrossRef]
- Alharbi, Y.R.; Abadel, A.A.; Mayhoub, O.A.; Kohail, M. Effect of using available metakaolin and nano materials on the behavior of reactive powder concrete. Constr. Build. Mater. 2021, 269, 121344. [Google Scholar] [CrossRef]
- Abdellatief, M.; AL-Tam, S.M.; Elemam, W.E.; Alanazi, H. Development of ultra-high-performance concrete with low environmental impact integrated with metakaolin and industrial wastes. Case Stud. Constr. Mater. 2023, 18, e01724. [Google Scholar] [CrossRef]
- Soliman, N.A.; Tagnit-Hamou, A. Self-consolidating high-strength concrete optimization by mixture design method. ACI Mater. J. 2010, 107, 357–364. [Google Scholar] [CrossRef]
- Lima, N.B.; Nascimento, H.C.B.; Vilemen, P.; Santos, L.B.T.; Pontes, M. Combining ultrasonic testing, infrared thermography, and stereoscopy to unveil characteristics of the adhesion capacity of metakaolin plastering mortars. Constr. Build. Mater. 2023, 408, 133829. [Google Scholar] [CrossRef]
- Hu, C.; Li, Z. Property investigation of individual phases in cementitious composites containing silica fume and fly ash. Cem. Concr. Compos. 2015, 57, 17–26. [Google Scholar] [CrossRef]
- Indhumathi, S.; Kumar, S.P.; Pichumani, M. Reconnoitring principles and practice of Modified Andreasen and Andersen particle packing theory to augment Engineered cementitious composite. Constr. Build. Mater. 2022, 353, 129106. [Google Scholar] [CrossRef]
- Li, Z.; Ding, Z. Property improvement of Portland cement by incorporating with metakaolin and slag. Cem. Concr. Res. 2003, 33, 579–584. [Google Scholar] [CrossRef]
- Papp, V.; Janovics, R.; Kertesz, T.P.; Nemes, Z.; Fodor, T. State and role of water confined in cement and composites modified with metakaolin and additives. J. Mol. Liq. 2023, 388, 122716. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, K.; Chen, L.; Prateek, G.; Yuan, Q. An approach to improve the reactivity of basic oxygen furnace slag: Accelerated carbonation and the combined use of metakaolin. Constr. Build. Mater. 2023, 379, 131218. [Google Scholar] [CrossRef]
- EN 196-1; Methods of Testing Cement—Part 1: Determination of Strength. European Standards s.r.o.: Brussels, Belgium, 2016; 38p.
- EN 1015-10; Methods of Test for Mortar for Masonry—Part 10: Determination of Dry Bulk Density of Hardened Mortar. European Standards s.r.o.: Brussels, Belgium, 2000; 10p.
- EN 1015-18; Methods of Test for Mortar for Masonry—Part 18: Determination of Water Absorption Coefficient Due to Capillary Action of Hardened Mortar. European Standards s.r.o.: Brussels, Belgium, 2002; 12p.
- Mačiulaitis, R.; Malaiškienė, J. Possibilities to control ceramics properties by changing firing cycles. Constr. Build. Mater. 2009, 23, 226–232. [Google Scholar] [CrossRef]
- Du, H.; Tan, K.H. Waste Glass Powder as Cement Replacement in Concrete. J. Adv. Concr. Technol. 2014, 12, 468–477. [Google Scholar] [CrossRef]
- Paul, C.; Šavija, S.B.; Babafemi, A.J. A comprehensive review on mechanical and durability properties of cement-based materials containing waste recycled glass. J. Clean. Prod. 2018, 198, 891–906. [Google Scholar] [CrossRef]
- Kamali, M.; Ghahremaninezhad, A. An investigation into the hydration and microstructure of cement pastes modified with glass powders. Constr. Build. Mater. 2016, 112, 915–924. [Google Scholar] [CrossRef]
- Schwarz, N.; Neithalath, N. Influence of a fine glass powder on cement hydration: Comparison to fly ash and modeling the degree of hydration. Cem. Concr. Res. 2008, 38, 429–436. [Google Scholar] [CrossRef]
- Amer, A.A.; El-Hoseny, S. Properties and performance of metakaolin pozzolanic cement Pastes. J. Therm. Anal. Calorim. 2017, 129, 33–44. [Google Scholar] [CrossRef]
- Lin, R.S.; Wang, X.Y.; Zhang, G.Y. Effects of quartz powder on the microstructure and key properties of cement paste. Sustainability 2018, 10, 3369. [Google Scholar] [CrossRef]
- Krauss, H.W.; Budelmann, H. Hydration kinetics of cement paste with very fine inert mineral additives. In Proceedings of the International RILEM Conference on Advances in Construction Materials Through Science and Engineering, Hong Kong, China, 5–7 September 2011; pp. 93–99. Available online: https://www.rilem.net/images/publis/8b61caa20af3b4fbcbee23ae4c387e35.pdf (accessed on 15 July 2024).
- Liu, M.; Liu, E.; Hao, J.L.; Sarno, L.; Xia, J. Hydration and material properties of blended cement with ground desert sand. Constr. Build. Mater. 2023, 389, 131624. [Google Scholar] [CrossRef]
- Sabir, B.B.; Wild, S.; Bai, J. Metakaolin and calcined clay as pozzolans for concrete: A review. Cem. Concr. Compos. 2001, 23, 441–454. [Google Scholar] [CrossRef]
- Ling, T.C.; Poon, C.S. A comparative study on the feasible use of recycled beverage and CRT funnel glass as fine aggregate in cement mortar. J. Clean. Prod. 2012, 29–30, 46–52. [Google Scholar] [CrossRef]
- Malaiškienė, J.; Bekerė, K. Impact of Electronic Waste Glass on the Properties of Cementitious Materials. Buildings 2024, 14, 1218. [Google Scholar] [CrossRef]
- Daukšys, M.; Ivanauskas, E.; Juočiūnas, S.; Pupeikis, D.; Šeduikyte, L. The assessment of prediction methodology of concrete freezing and thawing resistance. Mater. Sci. (Medžiagotyra) 2012, 18, 403–409. [Google Scholar] [CrossRef]
- Malaiskiene, J.; Vaiciene, M.; Giosuè, C.; Tittarelli, F. The impact of bitumen roofing production waste (BTw) on cement mortar properties. Constr. Build. Mater. 2020, 234, 117350. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, W.; Peng, Y.; Tang, S.; Wang, L.; Shi, Y.; Li, Y.; Wang, Y.; Geng, Z.; Wu, K. Hydration and Fractal Analysis on Low-Heat Portland Cement Pastes Using Thermodynamics-Based Methods. Fractal Fract. 2023, 7, 606. [Google Scholar] [CrossRef]
- Liao, Y.; Cai, Z.; Deng, F.; Ye, J.; Wang, K.; Tang, S. Hydration behavior and thermodynamic modelling of ferroaluminate cement blended with steel slag. J. Build. Eng. 2024, 97, 110833. [Google Scholar] [CrossRef]
- Wang, L.; Jin, M.; Zhou, S.; Tang, S.; Lu, X. Investigation of microstructure of C-S-H and micro-mechanics of cement pastes under NH4NO3 dissolution by 29Si MAS NMR and microhardness. Measurement 2021, 185, 110019. [Google Scholar] [CrossRef]
Material | SiO2 | CaO | Al2O3 | Fe2O3 | Na2O | MgO | SO3 | K2O | TiO2 | Cl | ZnO | CO2 | P2O5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PC | 17.0 | 61.1 | 4.48 | 3.17 | 0.13 | 2.94 | 2.05 | 1.24 | 0.26 | 0.02 | 0.02 | 7.24 | 0.09 |
MQ | 99.2 | 0.07 | 0.57 | 0.05 | 0.03 | 0.02 | 0.02 | 0.02 | 0.05 | – | – | – | – |
MS | 76.5 | 0.72 | 1.20 | 1.88 | 1.28 | 1.36 | 0.29 | 2.02 | – | 0.51 | 0.08 | 13.3 | 0.43 |
MK | 52.4 | 1.27 | 39.8 | 1.03 | 3.39 | 0.37 | 0.08 | 0.93 | 0.54 | 0.01 | – | – | 0.12 |
MG | 72.3 | 9.65 | 1.01 | 0.17 | 12.7 | 3.49 | 0.28 | 0.33 | 0.07 | 0.02 | – | – | – |
Material | Average Particle Size (µm) | d10 (µm) | d50 (µm) | d90 (µm) |
---|---|---|---|---|
PC | 17.1 | 0.9 | 12.6 | 40.7 |
MQ | 8.5 | 0.7 | 5.8 | 20.5 |
MS | 3.8 | 0.1 | 0.7 | 5.8 |
MK | 20.4 | 2.6 | 16.8 | 44.5 |
MG | 15.1 | 2.7 | 13.9 | 29.2 |
Designation | PC | NS | MQ | MS | MK | MG | SP | AD | W | W/B |
---|---|---|---|---|---|---|---|---|---|---|
HPC-1 | 900 | 1400 | 20 | 2 | 196 | 0.22 | ||||
HPC-2 | 810 | 1400 | 90 | 20 | 2 | 196 | 0.22 | |||
HPC-3 | 810 | 1400 | 90 | 20 | 2 | 196 | 0.22 | |||
HPC-4 | 810 | 1400 | 90 | 20 | 2 | 196 | 0.22 | |||
HPC-5 | 810 | 1400 | 90 | 20 | 2 | 196 | 0.22 | |||
HPC-6 | 810 | 1400 | 45 | 45 | 20 | 2 | 196 | 0.22 |
Parameter\Composition | HPC-1 | HPC-2 | HPC-3 | HPC-4 | HPC-5 | HPC-6 |
---|---|---|---|---|---|---|
Max temperature (°C) | 58.6 | 57.9 (−1.7%) * | 55.9 (−4.6%) * | 55.0 (−6.1%) * | 56.4 (−3.8%) * | 56.6 (−3.4%) * |
Time (h) | 8.4 | 8.3 (−1.2%) * | 8.0 (−4.8%) * | 8.5 (+1.2%) * | 9.1 (+8.3%) * | 8.5 (+1.2%) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malaiškienė, J.; Jakubovskis, R. Influence of Pozzolanic Additives on the Structure and Properties of Ultra-High-Performance Concrete. Materials 2025, 18, 1304. https://doi.org/10.3390/ma18061304
Malaiškienė J, Jakubovskis R. Influence of Pozzolanic Additives on the Structure and Properties of Ultra-High-Performance Concrete. Materials. 2025; 18(6):1304. https://doi.org/10.3390/ma18061304
Chicago/Turabian StyleMalaiškienė, Jurgita, and Ronaldas Jakubovskis. 2025. "Influence of Pozzolanic Additives on the Structure and Properties of Ultra-High-Performance Concrete" Materials 18, no. 6: 1304. https://doi.org/10.3390/ma18061304
APA StyleMalaiškienė, J., & Jakubovskis, R. (2025). Influence of Pozzolanic Additives on the Structure and Properties of Ultra-High-Performance Concrete. Materials, 18(6), 1304. https://doi.org/10.3390/ma18061304