Numerical Modeling and Optimization of Large-Scale Molten Titanium Levitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Object
2.2. Numerical Model
2.2.1. Electromagnetic Submodel
2.2.2. Hydrodynamic Submodel
2.2.3. Computational Mesh
2.3. Optimization
3. Results and Discussion
4. Conclusions
- This paper presents a novel levitation melting system that utilizes a gutter-shaped coil with four independently powered sections.
- By removing the metal load from the axial region, the proposed system allows Lorentz forces to support the entire lower surface of the metal, in contrast to conventional levitation systems.
- This approach enables the melting of large, industrially relevant metal masses.
- Since the metal remains completely free from contact with the crucible, the proposed device offers advantages over semi-levitation systems with a cold crucible in terms of metal purity, energy efficiency, and the degree of metal overheating.
- Due to the off-axis placement of the metal and the resulting unbalanced forces, maintaining a stable position of the toroidal metal load at the center of the coil channel poses a challenge. Therefore, optimizing the currents supplying the four coil sections was necessary.
- For optimization purposes, a numerical model of the liquid metal process was developed, incorporating bidirectional coupling of electromagnetic and hydrodynamic fields along with the dynamics of the free metal surface.
- The proposed hierarchical system for numerical current optimization ensures a stable position of the analyzed metal masses.
- Numerical experiments have demonstrated that, given the adopted coil geometry, it is possible to stably levitate a titanium load with a mass of 2.6 kg—a sufficient amount of metal for industrial applications.
- A cross-sectional radius of 18 mm for the largest load should maintain the continuity of the toroid during the process, allowing for an uninterrupted current flow around the load and ensuring the stability of the levitation mechanism.
- The developed methodology provides a foundation for constructing a physical device for large-scale electromagnetic levitation. However, this requires the addition of an unconventional power source capable of supplying four different currents, as well as the design of a spiral coil with the proposed 2D cross-section in a real 3D geometry.
- There are no physical obstacles to further scaling the device and the mass of the melted metal. The only limitation is the availability of sufficient power from the mentioned four-channel source.
- When scaling up, the coil geometry can remain unchanged, only the currents need to be re-optimized. However, a potentially interesting further research direction is also the optimization of the coil geometry.
- Although the research was conducted on titanium, the proposed levitation melting system can be used to melt other metals with higher density (e.g., zirconium, niobium, molybdenum, and tantalum). Of course, the optimized current values for these metals necessary to maintain levitation will be higher.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smalcerz, A.; Wecki, B.; Blacha, L.; Labaj, J.; Jodkowski, M.; Smagor, A. Kinetics of Zinc Evaporation from Aluminium Alloys Melted Using VIM and ISM Technologies. Materials 2021, 14, 6641. [Google Scholar] [CrossRef]
- Garcia-Michelena, P.; Ruiz-Reina, E.; Herrero-Dorca, N.; Chamorro, X. Multiphysics modeling and experimental validation of heat and mass transfer for the vacuum induction melting process. Appl. Therm. Eng. 2024, 243, 122562. [Google Scholar] [CrossRef]
- Garcia-Michelena, P.; Ruiz-Reina, E.; Gordo-Burgoa, O.; Herrero-Dorca, N.; Chamorro, X. Numerical Simulation of Free Surface Deformation and Melt Stirring in Induction Melting Using ALE and Level Set Methods. Materials 2025, 18, 199. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, B.; Morscheiser, J.; Lochbichler, C. Potential of ceramic crucibles for melting of titanium-alloys and gamma-titaniumaluminide. In Proceedings of the 51st International Colloquium on Refractories, Aachen, Germany, 16 October 2008; pp. 229–232. [Google Scholar] [CrossRef]
- Schaffoener, S.; Aneziris, C.G.; Berek, H.; Hubalkova, J.; Rotmann, B.; Friedrich, B. Corrosion behavior of calcium zirconate refractories in contact with titanium aluminide melts. J. Eur. Ceram. Soc. 2015, 35, 1097–1106. [Google Scholar] [CrossRef]
- Schafföner, S.; Aneziris, C.G.; Berek, H.; Rotmann, B.; Friedrich, B. Investigating the corrosion resistance of calcium zirconate in contact with titanium alloy melts. J. Eur. Ceram. Soc. 2015, 35, 259–266. [Google Scholar] [CrossRef]
- Fashu, S.; Lototskyy, M.; Davids, M.W.; Pickering, L.; Linkov, V.; Tai, S.; Renheng, T.; Fangming, X.; Fursikov, P.V.; Tarasov, B.P. A review on crucibles for induction melting of titanium alloys. Mater. Des. 2020, 186, 8295. [Google Scholar] [CrossRef]
- Kamyshnykova, K.; Lapin, J. Vacuum induction melting and solidification of TiAl-based alloy in graphite crucibles. Vacuum 2018, 154, 218–226. [Google Scholar] [CrossRef]
- Song, Q.; Liang, T.; Qian, K.; Xing, W.; Zha, X.; Chen, B.; Ma, Y.; Liu, K. Corrosion resistance of calcium zirconate crucible to titanium-copper melts. J. Eur. Ceram. Soc. 2022, 42, 3321–3331. [Google Scholar] [CrossRef]
- Palacz, M.; Melka, B.; Wecki, B.; Siwiec, G.; Przylucki, R.; Bulinski, P.; Golak, S.; Blacha, L.; Smolka, J. Experimental Analysis of the Aluminium Melting Process in Industrial Cold Crucible Furnaces. Met. Mater. Int. 2020, 26, 695–707. [Google Scholar] [CrossRef]
- Guglielmi, M.; Baake, E.; Köppen, A.; Holzmann, E.; Herbst, S.; Maryamnegari, S.M. Induction melting in a cold crucible furnace applied to innovative high-melting temperature metals. Magnetohydrodynamics 2022, 58, 523–532. [Google Scholar] [CrossRef]
- Bojarevics, V.; Nishimura, T.; Matsuwaka, D. Development of advanced cold crucible melting of titanium alloys. Magnetohydrodynamics 2022, 58, 13–24. [Google Scholar] [CrossRef]
- Witteveen, J.P.; Vrielink, M.A.B.; van Gastel, R.; van Houselt, A.; Zandvliet, H.J.W. Containerless metal single-crystal growth via electromagnetic levitation. Rev. Sci. Instrum. 2021, 92, 4486. [Google Scholar] [CrossRef]
- Sabouni Tabari, R.; Halali, M.; Javadi, A.A.; Khanjanpour, M.H. Experimental Analysis and Characterization of High-Purity Aluminum Nanoparticles (Al-NPs) by Electromagnetic Levitation Gas Condensation (ELGC). Nanomaterials 2020, 10, 2084. [Google Scholar] [CrossRef]
- Hatchavanich, N.; Sangswang, A.; Naetiladdanon, S. A Mutually Coupled Stabilization Coil Configuration for Electromagnetic Levitation Melting With Frequency Consideration. IEEE Access 2024, 12, 2025–2031. [Google Scholar] [CrossRef]
- Witteveen, J.; van Gastel, R.; van Houselt, A.; Zandvliet, H. 3D modeling of electromagnetic levitation coils. Curr. Appl. Phys. 2021, 32, 45–49. [Google Scholar] [CrossRef]
- Nycz, B.; Przylucki, R.; Malinski, L.; Golak, S. A Simulation Model for the Inductor of Electromagnetic Levitation Melting and Its Validation. Materials 2023, 16, 4634. [Google Scholar] [CrossRef]
- Snikeris, J.; Apsitis, A.; Pumpurs, A.; Lacis, U.; Kravchenko, S.; Silamikelis, V. Experimental observation of the vertical displacement between heating and levitation regions in an electromagnetic levitation coil. J. Phys. D Appl. Phys. 2024, 57, 095002. [Google Scholar] [CrossRef]
- Pang, X.; Zhang, G.; Yan, P.; Xiao, Z.; Wang, X. Study on the Migration Patterns of Oxygen Elements during the Refining Process of Ti-48Al Scrap under Electromagnetic Levitation. Materials 2024, 17, 3709. [Google Scholar] [CrossRef]
- Chen, R.; Yang, Y.; Fang, H.; Yang, Y.; Wang, Q.; Guo, J.; Ding, H.; Su, Y.; Fu, H. Glass melting inside electromagnetic cold crucible using induction skull melting technology. Appl. Therm. Eng. 2017, 121, 146–152. [Google Scholar] [CrossRef]
- Bulinski, P.; Smolka, J.; Golak, S.; Przylucki, R.; Palacz, M.; Siwiec, G.; Melka, B.; Blacha, L. Numerical modelling of multiphase flow and heat transfer within an induction skull melting furnace. Int. J. Heat Mass Transf. 2018, 126, 980–992. [Google Scholar] [CrossRef]
- Bulinski, P.; Smolka, J.; Siwiec, G.; Blacha, L.; Golak, S.; Przylucki, R.; Palacz, M.; Melka, B. Numerical examination of the evaporation process within a vacuum induction furnace with a comparison to experimental results. Appl. Therm. Eng. 2019, 150, 348–358. [Google Scholar] [CrossRef]
- Bulinski, P.; Smolka, J.; Golak, S.; Przyłucki, R.; Palacz, M.; Siwiec, G.; Melka, B.; Blacha, L. Analysis of Al-Zn alloy refining in an industrial induction skull melter with two crucible types. Int. J. Heat Mass Transf. 2021, 179, 121704. [Google Scholar] [CrossRef]
- Yu, K.; Zheng, Q.; Li, L.; Wang, G.; Zhang, K.; Liu, Y.; Wu, X. Numerical and experimental investigation of electromagnetic cold crucible used for emissivity measurement of molten material. Int. J. Therm. Sci. 2023, 192, 108417. [Google Scholar] [CrossRef]
- Smalcerz, A.; Blacha, L.; Barglik, J.; Dolezel, I.; Wieczorek, T. Electromagnetic processing of molten copper alloys in the induction furnace with cold crucible. Appl. Therm. Eng. 2024, 73, 51–62. [Google Scholar] [CrossRef]
- Zhang, C.; Cao, F.; Zhang, L.; Jin, Z.; Cao, G.; Qiu, Z.; Shen, H.; Huang, Y.; Jiang, S.; Sun, J. Break the superheat temperature limitation of induction skull melting technology. Appl. Therm. Eng. 2023, 220, 9780. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, L.; Cao, F.; Jin, Z.; Cao, G.; Shen, H.; Huang, Y.; Sun, J. Optimizing energy efficiency in induction skull melting process: Investigating the crucial impact of melting system structure. Sci. Rep. 2024, 14, 6303. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Bai, Y.; Zhao, B.; Li, L.; Liu, Y.; Zhang, K.; Liu, Y.; Yu, K. Improve the performance of cold crucible used for emissivity measurement of molten metal. Case Stud. Therm. Eng. 2025, 68, 105898. [Google Scholar] [CrossRef]
- Golak, S.; Panic, B. Numerical model of large-scale levitation melting process. Arch. Metall. Mater. 2019, 64, 627–632. [Google Scholar] [CrossRef]
- Zorzetto, M.; Torchio, R.; Lucchini, F.; Forzan, M.; Dughiero, F. Proper Orthogonal Decomposition for Parameterized Macromodeling of a Longitudinal Electromagnetic Levitator. IEEE Trans. Magn. 2025. [Google Scholar] [CrossRef]
- Boikov, A.; Payor, V. The Present Issues of Control Automation for Levitation Metal Melting. Symmetry 2022, 14, 1968. [Google Scholar] [CrossRef]
- Spitans, S.; Baake, E.; Jakovics, A.; Franz, H. Large scale electromagnetic levitation melting of metals. Int. J. Appl. Electrom. 2017, 53, S61–S66. [Google Scholar] [CrossRef]
- Spitans, S.; Franz, H.; Baake, E.; Jakovics, A. Large-scale levitation melting and casting of titanium alloys. Magnetohydrodynamics 2017, 53, 633–641. [Google Scholar] [CrossRef]
- Spitans, S.; Bauer, C.; Franz, H.; Sehring, B.; Baake, E. Investment casting with unique levitation melting technology-FastCast. In Proceedings of the Liquid Metal Processing and Casting (LMPC) Conference, Philadelphia, PA, USA, 18–21 September 2022; pp. 213–222. [Google Scholar]
- Golak, S.; Geuzaine, C.; Przylucki, R.; Nycz, B.; Henrotte, F. Hybrid numerical 3D model of electromagnetic levitation of molten metal. Appl. Therm. Eng. 2025, 258, 124697. [Google Scholar] [CrossRef]
- Spitans, S.; Jakovics, A.; Baake, E.; Nacke, B. Numerical modelling of free surface dynamics of melt in an alternate electromagnetic field. Magnetohydrodynamics 2011, 47, 385–397. [Google Scholar]
- Spitans, S.; Jakovics, A.; Baake, E.; Nacke, B. Numerical modeling of free surface dynamics of melt in an alternate electromagnetic field: Part I. Implementation and verification of model. Metall. Mater. Trans. B 2013, 44, 593–605. [Google Scholar] [CrossRef]
- Spitans, S.; Baake, E.; Nacke, B.; Jakovics, A. Numerical Modeling of Free Surface Dynamics of Melt in an Alternate Electromagnetic Field. Part II: Conventional Electromagnetic Levitation. Metall. Mater. Trans. B 2016, 47, 522–536. [Google Scholar] [CrossRef]
- Terekhov, T.V.; Skrigan, I.N.; Lopukh, D.B. Numerical Modeling of Electromagnetic Levitation of Metal. In Proceedings of the 2024 Conference of Young Researchers in Electrical and Electronic Engineering (ElCon), Saint Petersburg, Russia, 29–31 January 2024; pp. 510–514. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, G.; Yan, P.; Pang, X.; Xiao, Z. Numerical Simulation of Electromagnetic–Thermal–Fluid Coupling for the Deformation Behavior of Titanium–Aluminum Alloy under Electromagnetic Levitation. Materials 2024, 17, 3338. [Google Scholar] [CrossRef]
- Dular, P.; Geuzaine, C. GetDP Reference Manual: The Documentation for GetDP, a General Environment for the Treatment of Discrete Problems; University of Liège: Liège, Belgium, 2025. [Google Scholar]
- Geuzaine, C. GetDP: A general finite-element solver for the de Rham complex. In Proceedings of the PAMM Volume 7 Issue 1, Special Issue: Sixth International Congress on Industrial Applied Mathematics (ICIAM07) and GAMM Annual Meeting, Zürich, Switzerland, 16–20 July 2007; Wiley: Hoboken, NJ, USA, 2008; Volume 7, pp. 1010603–1010604. [Google Scholar]
- Hirt, C.; Nichols, B. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Zybala, R.; Wycislik, J.; Golak, S.; Cieplinski, P.; Sak, T.; Madej, P. Fast Numerical Optimization of Electrode Geometry in a Two-Electrode Electric Resistance Furnace Using a Surrogate Criterion Derived Exclusively from an Electromagnetic Submodel. Appl. Sci. 2024, 14, 957. [Google Scholar] [CrossRef]
- Fornalczyk, A.; Golak, S.; Przylucki, R. Investigation of the influence of supply parameters on the velocity of molten metal in a metallurgical reactor used for platinum recovery. Arch. Civ. Mech. Eng. 2015, 15, 171–178. [Google Scholar] [CrossRef]
Vacuum Induction Melting | Classic Levitation | Semi-Levitation (Cold Crucible) | Large-Scale Levitation | |
---|---|---|---|---|
Metal mass | Very high | Very low | Very low | High |
Metal purity | Low | Very high | High | Very high |
Metal overheating | Very high | Very high | Low | Very high |
Energy efficiency | Very high | High | Low | High |
Property | Value |
---|---|
Titanium density | 4110 kg/m3 |
Electrical conductivity of titanium | 0.56 MS/m |
Magnetic permeability of titanium | 1.00 |
Titanium viscosity | 4.42 mPa s |
Surface tension of titanium | 1.56 N/m |
Air density | 1.225 kg/m3 |
Air viscosity | 0.018 mPa s |
Magnetic permeability of air | 1.00 |
Electrical conductivity of copper | 58 MS/m |
Magnetic permeability of copper | 1.00 |
Load Size [mm] | 12 | 15 | 18 |
---|---|---|---|
Current 1 [A] | 653.5 | 621.4 | 573.2 |
Current 2 [A] | 418.8 | 509.8 | 589.1 |
Current 3 [A] | 403.3 | 390.8 | 366.0 |
Current 4 [A] | 460.8 | 423.5 | 374.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golak, S.; Wyciślik, J.; Zybała, R.; Hanusek, R. Numerical Modeling and Optimization of Large-Scale Molten Titanium Levitation. Materials 2025, 18, 1268. https://doi.org/10.3390/ma18061268
Golak S, Wyciślik J, Zybała R, Hanusek R. Numerical Modeling and Optimization of Large-Scale Molten Titanium Levitation. Materials. 2025; 18(6):1268. https://doi.org/10.3390/ma18061268
Chicago/Turabian StyleGolak, Sławomir, Jakub Wyciślik, Radosław Zybała, and Robert Hanusek. 2025. "Numerical Modeling and Optimization of Large-Scale Molten Titanium Levitation" Materials 18, no. 6: 1268. https://doi.org/10.3390/ma18061268
APA StyleGolak, S., Wyciślik, J., Zybała, R., & Hanusek, R. (2025). Numerical Modeling and Optimization of Large-Scale Molten Titanium Levitation. Materials, 18(6), 1268. https://doi.org/10.3390/ma18061268