A High-Performance All-Carbon Diamond Pixel Solar-Blind Detector with In Situ Converted Graphene Electrodes
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
3.1. Diamond Characterizations
3.2. Formation of Graphene Electrodes
3.3. Performance Characterization of Photodetectors
3.4. Solar-Blind Imaging Performance of Photodetectors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yildirim, M.A.; Teker, K. Self-powered fine-pattern flexible SiC single nanowire ultraviolet photodetector. J. Alloys Compd. 2021, 868, 159255. [Google Scholar] [CrossRef]
- Li, K.; Wang, F.; Deng, M.; Hu, K.; Song, D.; Hao, Y.; Di, H.; Dong, K.; Yan, S.; Song, Z.; et al. Microstructure and bending piezoelectric characteristics of AlN film for high-frequency flexible SAW devices. J. Mater. Sci. Mater. Electron. 2021, 32, 13146–13155. [Google Scholar] [CrossRef]
- Taqy, S.; Sarkar, P.; Hamid, M.A.; Pranto, T.; Piner, E.L.; Droopad, R. Haque, Diamond deposition on AlN using Q-carbon interlayer through overcoming the substrate limitations. Carbon 2024, 219, 118809. [Google Scholar] [CrossRef]
- Zhang, T.; Li, R.-H.; Su, K.; Su, H.-K.; Lv, Y.-G.; Xu, S.-R.; Zhang, J.-C.; Hao, Y. Proton irradiation-induced dynamic characteristics on high performance GaN/AlGaN/GaN Schottky barrier diodes. Chin. Phys. B 2023, 32, 087301. [Google Scholar] [CrossRef]
- Talochka, Y.; Aleksiejūnas, R.; Podlipskas, Ž.; Mickevičius, J. Tamulaitis, Evaluation of ambipolar diffusion coefficient in AlxGa1−xN semiconductor. J. Alloys Compd. 2023, 969, 172475. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Q.; Wang, X.; Yan, J.; Tang, H. MgxZn1−xO films synthesized by laser sintering method and UV detectors. J. Alloys Compd. 2020, 847, 156460. [Google Scholar] [CrossRef]
- Wang, A.; Tang, T.; Ren, S.; Zhang, J.; Wu, L.; Li, W.; Wang, W.; Feng, L. Characterization of co-sputtered MgxZn1-xO thin films and their application in CdTe solar cells. Mater. Sci. Semicond. Process. 2019, 94, 28–34. [Google Scholar] [CrossRef]
- Huang, Z.; Zhou, S.; Chen, L.; Zheng, Q.; Li, H.; Xiong, Y.; Ye, L.; Kong, C.; Fan, S.; Zhang, H.; et al. Fully Transparent Amorphous Ga2O3-Based Solar-Blind Ultraviolet Photodetector with Graphitic Carbon Electrodes. Crystals 2022, 12, 1427. [Google Scholar] [CrossRef]
- Chen, M.; Ma, J.; Li, P.; Xu, H.; Liu, Y. Zero-biased deep ultraviolet photodetectors based on graphene/cleaved (100) Ga2O3 heterojunction. Opt. Express 2019, 27, 8717–8726. [Google Scholar] [CrossRef]
- Jia, L.; Cheng, L.; Zheng, W. 8-nm narrowband photodetection in diamonds. Opto-Electron. Sci. 2023, 2, 230010. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, Y.; Yeh, C.-R.; Jiang, M.; Li, X.; Lu, S.; Lin, I.N.; Hu, X. CH4/(Ar–H2) plasma post-treatments produce nano-diamond aggregation and improvement in field emission properties of ultrananocrystalline diamond films. Appl. Phys. A 2023, 130, 47. [Google Scholar] [CrossRef]
- Liao, M.; Sang, L.; Teraji, T.; Imura, M.; Alvarez, J.; Koide, Y. Comprehensive Investigation of Single Crystal Diamond Deep-Ultraviolet Detectors. Jpn. J. Appl. Phys. 2012, 51, 090115. [Google Scholar] [CrossRef]
- Li, F.N.; Zhang, J.W.; Wang, X.L.; Liu, Z.C.; Wang, W.; Fu, J.; Zhu, T.F.; Wang, H.X. Deep-ultraviolet detectors based on oxygen-/fluorine-terminated (100) diamond. Superlattices Microstruct. 2016, 100, 258–265. [Google Scholar] [CrossRef]
- Reed, B.P.; Bathen, M.E.; Ash, J.W.R.; Meara, C.J.; Zakharov, A.A.; Goss, J.P.; Wells, J.W.; Evans, D.A.; Cooil, S.P. Diamond (111) surface reconstruction and epitaxial graphene interface. Phys. Rev. B 2022, 105, 205304. [Google Scholar] [CrossRef]
- Cheng, L.; Wu, Y.; Cai, W.; Zheng, W. Diamond immersion photodetector for 213 nm deep-ultraviolet photodetection. Mater. Today Phys. 2023, 36, 101164. [Google Scholar] [CrossRef]
- SPearton, J.; Douglas, E.A.; Shul, R.J.; Ren, F. Plasma etching of wide bandgap and ultrawide bandgap semiconductors. Journal of Vacuum Science & Technology A: Vacuum. Surf. Film. 2020, 38, 020802. [Google Scholar]
- Rafin, S.; Ahmed, R.; Haque, M.A.; Hossain, M.K.; Haque, M.A.; Mohammed, O.A. Power Electronics Revolutionized: A Comprehensive Analysis of Emerging Wide and Ultrawide Bandgap Devices. Micromachines 2023, 14, 2045. [Google Scholar] [CrossRef]
- Bader, S.J.; Lee, H.; Chaudhuri, R.; Huang, S.; Hickman, A.; Molnar, A.; Xing, H.G.; Jena, D.; Then, H.W.; Chowdhury, N.; et al. Prospects for Wide Bandgap and Ultrawide Bandgap CMOS Devices. IEEE Trans. Electron Devices 2020, 67, 4010–4020. [Google Scholar] [CrossRef]
- Jde Oliveira Neto, G.; Viana, J.R.; Lima, A.; Lopes, J.B.O.; Ayala, A.P.; Lage, M.R.; Stoyanov, S.R.; Santos, A.O.D.; Lang, R. Assessing the Novel Mixed Tutton Salts K2Mn0.03Ni0.97(SO4)2(H2O)6 and K2Mn0.18Cu0.82(SO4)2(H2O)6 for Thermochemical Heat Storage Applications: An Experimental-Theoretical Study. Molecules 2023, 28, 8058. [Google Scholar] [CrossRef]
- de Oliveira Neto, J.G.; Marques, J.V.; da Silva Filho, J.G.; Antonelli, E.; Ayala, A.P.; Santos, A.O.D.; Lang, R. Mixed (NH4)2Mn0.47Cu0.53(SO4)2(H2O)6 Tutton salt: A novel optical material for solar-blind technology. Opt. Mater. 2024, 157, 116400. [Google Scholar] [CrossRef]
- Serpente, V.; Bellucci, A.; Girolami, M.; Mastellone, M.; Iacobucci, S.; Ruocco, A.; Trucchi, D.M. Combined electrical resistivity-electron reflectivity measurements for evaluating the homogeneity of hydrogen-terminated diamond surfaces. Diam. Relat. Mater. 2021, 114, 108290. [Google Scholar] [CrossRef]
- Qiu, M.; Jia, Z.; Yang, M.; Li, M.; Shen, Y.; Liu, C.; Nishimura, K.; Jiang, N.; Wang, B.; Lin, C.-T.; et al. High-performance single crystal diamond pixel photodetector with nanosecond rise time for solar-blind imaging. Diam. Relat. Mater. 2024, 144, 110996. [Google Scholar] [CrossRef]
- Luo-xi, Z.; Huan, Y.I.N.; Yue, C.; Ming-kui, Z.H.U.; Yan-jie, S.U. High-performance transparent all-carbon photodetectors based on the semiconducting single-walled carbon nanotube/fullerene heterojunctions. Chin. Opt. 2023, 16, 1243–1256. [Google Scholar] [CrossRef]
- Li, F.N.; Bao, H.W.; Li, Y.; Ma, F.; Wang, H.X. Laser induced diamond/graphite structure for all-carbon deep-ultraviolet photodetector. Appl. Surf. Sci. 2023, 636, 157818. [Google Scholar] [CrossRef]
- Zhang, Z.-F.; Lin, C.-N.; Yang, X.; Zang, J.-H.; Li, K.-Y.; Lu, Y.-C.; Li, Y.-Z.; Dong, L.; Shan, C.-X. Wafer-sized polycrystalline diamond photodetector planar arrays for solar-blind imaging. J. Mater. Chem. C 2022, 10, 6488–6496. [Google Scholar] [CrossRef]
- Zhang, Z.; Lin, C.; Yang, X.; Tian, Y.; Gao, C.; Li, K.; Zang, J.; Yang, X.; Dong, L.; Shan, C. Solar-blind imaging based on 2-inch polycrystalline diamond photodetector linear array. Carbon 2021, 173, 427–432. [Google Scholar] [CrossRef]
- Yuan, Q.; Liu, L.; Dai, D.; Zhou, Y.; Liu, Y.; Yang, M.; Qiu, M.; Jia, Z.; Li, H.; Nishimura, K.; et al. A single-crystalline diamond X-ray detector based on direct sp3-to-sp2 conversed graphene electrodes. Funct. Diam. 2022, 2, 94–102. [Google Scholar] [CrossRef]
- Jia, Y.-W.; He, J.; He, M.; Zhu, X.-H.; Zhao, S.-M.; Liu, J.-L.; Chen, L.-X.; Wei, J.-J.; Li, C.-M. Synthesis of h-BN/diamond heterojunctions and its electrical characteristics. Acta Phys. Sin. 2022, 71, 228101. [Google Scholar] [CrossRef]
- Fei, H.; Sang, D.; Zou, L.; Ge, S.; Yao, Y.; Fan, J.; Wang, C.; Wang, Q. Research progress of optoelectronic devices based on diamond materials. Front. Phys. 2023, 11, 1226374. [Google Scholar] [CrossRef]
- Yuan, X.; Liu, J.; Shao, S.; Liu, J.; Wei, J.; Da, B.; Li, C.; Koide, Y. Thermal stability investigation for Ohmic contact properties of Pt, Au, and Pd electrodes on the same hydrogen-terminated diamond. AIP Adv. 2020, 10, 055114. [Google Scholar] [CrossRef]
- Kocyigit, A.; Yıldız, D.E.; Erdal, M.O.; Tataroglu, A.; Yıldırım, M. Investigation of AlN-based Schottky type photodetector in visible light detection. Phys. B Condens. Matter 2024, 690, 416286. [Google Scholar] [CrossRef]
- Gu, K.; Zhang, Z.; Huang, H.; Tang, K.; Huang, J.; Liao, M.; Wang, L. Tailoring photodetection performance of self-powered Ga2O3 UV solar-blind photodetectors through asymmetric electrodes. J. Mater. Chem. C 2023, 11, 5371–5377. [Google Scholar] [CrossRef]
- Hussain, S.; Zhao, S.; Zhang, Q.; Tao, L. Comparative Analysis of Thin and Thick MoTe2 Photodetectors: Implications for Next-Generation Optoelectronics. Nanomaterials 2024, 14, 1804. [Google Scholar] [CrossRef]
- Galbiati, A.; Lynn, S.; Oliver, K.; Schirru, F.; Nowak, T.; Marczewska, B.; Duenas, J.A.; Berjillos, R.; Martel, I.; Lavergne, L. Performance of Monocrystalline Diamond Radiation Detectors Fabricated Using TiW, Cr/Au and a Novel Ohmic DLC/Pt/Au Electrical Contact. IEEE Trans. Nucl. Sci. 2009, 56, 1863–1874. [Google Scholar] [CrossRef]
- Du, Y.; Li, Y.; Chen, J.; Shi, D.; Guo, E.; Zhang, H.; Wang, Z.; Qin, Q.; Zou, C.; Zhai, T.; et al. Liquid-Metal-Assisted Synthesis of Patterned GaN Thin Films for High-Performance UV Photodetectors Array. Small Methods 2024, 8, e2300175. [Google Scholar] [CrossRef]
- Li, X.-X.; Zeng, G.; Li, Y.-C.; Zhang, H.; Ji, Z.-G.; Yang, Y.-G.; Luo, M.; Hu, W.-D.; Zhang, D.W.; Lu, H.-L. High responsivity and flexible deep-UV phototransistor based on Ta-doped β-Ga2O3. npj Flex. Electron. 2022, 6, 47. [Google Scholar] [CrossRef]
- Shikata, S.; Matsuyama, Y.; Teraji, T. Dislocation analysis of homoepitaxial diamond (001) film by x-ray topography. Jpn. J. Appl. Phys. 2019, 58, 045503. [Google Scholar] [CrossRef]
- Su, K.; Ren, Z.; Zhang, J.; Liu, L.; Zhang, J.; Zhang, Y.; He, Q.; Zhang, C.; Ouyang, X.; Hao, Y. High performance hydrogen/oxygen terminated CVD single crystal diamond radiation detector. Appl. Phys. Lett. 2020, 116, 092104. [Google Scholar] [CrossRef]
- Lin, C.-N.; Zhang, Z.-F.; Lu, Y.-J.; Yang, X.; Zhang, Y.; Li, X.; Zang, J.-H.; Pang, X.-C.; Dong, L.; Shan, C.-X. High performance diamond-based solar-blind photodetectors enabled by Schottky barrier modulation. Carbon 2022, 200, 510–516. [Google Scholar] [CrossRef]
- Cao, X.; Liu, K.; Wu, D.; Zhou, Z.; Lin, P.; Zhuo, R.; Shi, Z.; Hu, X.; Zeng, L.; Li, X. Highly sensitive full solar-blind ultraviolet spectrum detection and imaging based on PdSe2/Ga2O3 vdW heterojunction. Opt. Lett. 2024, 49, 5324–5327. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, M.; Jia, Z.; Qiu, M.; Chen, X.; Cai, J.; Yang, M.; Shen, Y.; Liu, C.; Chee, K.W.A.; Jiang, N.; et al. A High-Performance All-Carbon Diamond Pixel Solar-Blind Detector with In Situ Converted Graphene Electrodes. Materials 2025, 18, 1222. https://doi.org/10.3390/ma18061222
Jiang M, Jia Z, Qiu M, Chen X, Cai J, Yang M, Shen Y, Liu C, Chee KWA, Jiang N, et al. A High-Performance All-Carbon Diamond Pixel Solar-Blind Detector with In Situ Converted Graphene Electrodes. Materials. 2025; 18(6):1222. https://doi.org/10.3390/ma18061222
Chicago/Turabian StyleJiang, Mingxin, Zhenglin Jia, Mengting Qiu, Xingqiao Chen, Jiayi Cai, Mingyang Yang, Yi Shen, Chaoping Liu, Kuan W. A. Chee, Nan Jiang, and et al. 2025. "A High-Performance All-Carbon Diamond Pixel Solar-Blind Detector with In Situ Converted Graphene Electrodes" Materials 18, no. 6: 1222. https://doi.org/10.3390/ma18061222
APA StyleJiang, M., Jia, Z., Qiu, M., Chen, X., Cai, J., Yang, M., Shen, Y., Liu, C., Chee, K. W. A., Jiang, N., Nishimura, K., Li, Q., Yuan, Q., & Li, H. (2025). A High-Performance All-Carbon Diamond Pixel Solar-Blind Detector with In Situ Converted Graphene Electrodes. Materials, 18(6), 1222. https://doi.org/10.3390/ma18061222