A High-Performance All-Carbon Diamond Pixel Solar-Blind Detector with In Situ Converted Graphene Electrodes
Abstract
1. Introduction
2. Experiment
3. Results and Discussion
3.1. Diamond Characterizations
3.2. Formation of Graphene Electrodes
3.3. Performance Characterization of Photodetectors
3.4. Solar-Blind Imaging Performance of Photodetectors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yildirim, M.A.; Teker, K. Self-powered fine-pattern flexible SiC single nanowire ultraviolet photodetector. J. Alloys Compd. 2021, 868, 159255. [Google Scholar] [CrossRef]
- Li, K.; Wang, F.; Deng, M.; Hu, K.; Song, D.; Hao, Y.; Di, H.; Dong, K.; Yan, S.; Song, Z.; et al. Microstructure and bending piezoelectric characteristics of AlN film for high-frequency flexible SAW devices. J. Mater. Sci. Mater. Electron. 2021, 32, 13146–13155. [Google Scholar] [CrossRef]
- Taqy, S.; Sarkar, P.; Hamid, M.A.; Pranto, T.; Piner, E.L.; Droopad, R. Haque, Diamond deposition on AlN using Q-carbon interlayer through overcoming the substrate limitations. Carbon 2024, 219, 118809. [Google Scholar] [CrossRef]
- Zhang, T.; Li, R.-H.; Su, K.; Su, H.-K.; Lv, Y.-G.; Xu, S.-R.; Zhang, J.-C.; Hao, Y. Proton irradiation-induced dynamic characteristics on high performance GaN/AlGaN/GaN Schottky barrier diodes. Chin. Phys. B 2023, 32, 087301. [Google Scholar] [CrossRef]
- Talochka, Y.; Aleksiejūnas, R.; Podlipskas, Ž.; Mickevičius, J. Tamulaitis, Evaluation of ambipolar diffusion coefficient in AlxGa1−xN semiconductor. J. Alloys Compd. 2023, 969, 172475. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Q.; Wang, X.; Yan, J.; Tang, H. MgxZn1−xO films synthesized by laser sintering method and UV detectors. J. Alloys Compd. 2020, 847, 156460. [Google Scholar] [CrossRef]
- Wang, A.; Tang, T.; Ren, S.; Zhang, J.; Wu, L.; Li, W.; Wang, W.; Feng, L. Characterization of co-sputtered MgxZn1-xO thin films and their application in CdTe solar cells. Mater. Sci. Semicond. Process. 2019, 94, 28–34. [Google Scholar] [CrossRef]
- Huang, Z.; Zhou, S.; Chen, L.; Zheng, Q.; Li, H.; Xiong, Y.; Ye, L.; Kong, C.; Fan, S.; Zhang, H.; et al. Fully Transparent Amorphous Ga2O3-Based Solar-Blind Ultraviolet Photodetector with Graphitic Carbon Electrodes. Crystals 2022, 12, 1427. [Google Scholar] [CrossRef]
- Chen, M.; Ma, J.; Li, P.; Xu, H.; Liu, Y. Zero-biased deep ultraviolet photodetectors based on graphene/cleaved (100) Ga2O3 heterojunction. Opt. Express 2019, 27, 8717–8726. [Google Scholar] [CrossRef]
- Jia, L.; Cheng, L.; Zheng, W. 8-nm narrowband photodetection in diamonds. Opto-Electron. Sci. 2023, 2, 230010. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, Y.; Yeh, C.-R.; Jiang, M.; Li, X.; Lu, S.; Lin, I.N.; Hu, X. CH4/(Ar–H2) plasma post-treatments produce nano-diamond aggregation and improvement in field emission properties of ultrananocrystalline diamond films. Appl. Phys. A 2023, 130, 47. [Google Scholar] [CrossRef]
- Liao, M.; Sang, L.; Teraji, T.; Imura, M.; Alvarez, J.; Koide, Y. Comprehensive Investigation of Single Crystal Diamond Deep-Ultraviolet Detectors. Jpn. J. Appl. Phys. 2012, 51, 090115. [Google Scholar] [CrossRef]
- Li, F.N.; Zhang, J.W.; Wang, X.L.; Liu, Z.C.; Wang, W.; Fu, J.; Zhu, T.F.; Wang, H.X. Deep-ultraviolet detectors based on oxygen-/fluorine-terminated (100) diamond. Superlattices Microstruct. 2016, 100, 258–265. [Google Scholar] [CrossRef]
- Reed, B.P.; Bathen, M.E.; Ash, J.W.R.; Meara, C.J.; Zakharov, A.A.; Goss, J.P.; Wells, J.W.; Evans, D.A.; Cooil, S.P. Diamond (111) surface reconstruction and epitaxial graphene interface. Phys. Rev. B 2022, 105, 205304. [Google Scholar] [CrossRef]
- Cheng, L.; Wu, Y.; Cai, W.; Zheng, W. Diamond immersion photodetector for 213 nm deep-ultraviolet photodetection. Mater. Today Phys. 2023, 36, 101164. [Google Scholar] [CrossRef]
- SPearton, J.; Douglas, E.A.; Shul, R.J.; Ren, F. Plasma etching of wide bandgap and ultrawide bandgap semiconductors. Journal of Vacuum Science & Technology A: Vacuum. Surf. Film. 2020, 38, 020802. [Google Scholar]
- Rafin, S.; Ahmed, R.; Haque, M.A.; Hossain, M.K.; Haque, M.A.; Mohammed, O.A. Power Electronics Revolutionized: A Comprehensive Analysis of Emerging Wide and Ultrawide Bandgap Devices. Micromachines 2023, 14, 2045. [Google Scholar] [CrossRef]
- Bader, S.J.; Lee, H.; Chaudhuri, R.; Huang, S.; Hickman, A.; Molnar, A.; Xing, H.G.; Jena, D.; Then, H.W.; Chowdhury, N.; et al. Prospects for Wide Bandgap and Ultrawide Bandgap CMOS Devices. IEEE Trans. Electron Devices 2020, 67, 4010–4020. [Google Scholar] [CrossRef]
- Jde Oliveira Neto, G.; Viana, J.R.; Lima, A.; Lopes, J.B.O.; Ayala, A.P.; Lage, M.R.; Stoyanov, S.R.; Santos, A.O.D.; Lang, R. Assessing the Novel Mixed Tutton Salts K2Mn0.03Ni0.97(SO4)2(H2O)6 and K2Mn0.18Cu0.82(SO4)2(H2O)6 for Thermochemical Heat Storage Applications: An Experimental-Theoretical Study. Molecules 2023, 28, 8058. [Google Scholar] [CrossRef]
- de Oliveira Neto, J.G.; Marques, J.V.; da Silva Filho, J.G.; Antonelli, E.; Ayala, A.P.; Santos, A.O.D.; Lang, R. Mixed (NH4)2Mn0.47Cu0.53(SO4)2(H2O)6 Tutton salt: A novel optical material for solar-blind technology. Opt. Mater. 2024, 157, 116400. [Google Scholar] [CrossRef]
- Serpente, V.; Bellucci, A.; Girolami, M.; Mastellone, M.; Iacobucci, S.; Ruocco, A.; Trucchi, D.M. Combined electrical resistivity-electron reflectivity measurements for evaluating the homogeneity of hydrogen-terminated diamond surfaces. Diam. Relat. Mater. 2021, 114, 108290. [Google Scholar] [CrossRef]
- Qiu, M.; Jia, Z.; Yang, M.; Li, M.; Shen, Y.; Liu, C.; Nishimura, K.; Jiang, N.; Wang, B.; Lin, C.-T.; et al. High-performance single crystal diamond pixel photodetector with nanosecond rise time for solar-blind imaging. Diam. Relat. Mater. 2024, 144, 110996. [Google Scholar] [CrossRef]
- Luo-xi, Z.; Huan, Y.I.N.; Yue, C.; Ming-kui, Z.H.U.; Yan-jie, S.U. High-performance transparent all-carbon photodetectors based on the semiconducting single-walled carbon nanotube/fullerene heterojunctions. Chin. Opt. 2023, 16, 1243–1256. [Google Scholar] [CrossRef]
- Li, F.N.; Bao, H.W.; Li, Y.; Ma, F.; Wang, H.X. Laser induced diamond/graphite structure for all-carbon deep-ultraviolet photodetector. Appl. Surf. Sci. 2023, 636, 157818. [Google Scholar] [CrossRef]
- Zhang, Z.-F.; Lin, C.-N.; Yang, X.; Zang, J.-H.; Li, K.-Y.; Lu, Y.-C.; Li, Y.-Z.; Dong, L.; Shan, C.-X. Wafer-sized polycrystalline diamond photodetector planar arrays for solar-blind imaging. J. Mater. Chem. C 2022, 10, 6488–6496. [Google Scholar] [CrossRef]
- Zhang, Z.; Lin, C.; Yang, X.; Tian, Y.; Gao, C.; Li, K.; Zang, J.; Yang, X.; Dong, L.; Shan, C. Solar-blind imaging based on 2-inch polycrystalline diamond photodetector linear array. Carbon 2021, 173, 427–432. [Google Scholar] [CrossRef]
- Yuan, Q.; Liu, L.; Dai, D.; Zhou, Y.; Liu, Y.; Yang, M.; Qiu, M.; Jia, Z.; Li, H.; Nishimura, K.; et al. A single-crystalline diamond X-ray detector based on direct sp3-to-sp2 conversed graphene electrodes. Funct. Diam. 2022, 2, 94–102. [Google Scholar] [CrossRef]
- Jia, Y.-W.; He, J.; He, M.; Zhu, X.-H.; Zhao, S.-M.; Liu, J.-L.; Chen, L.-X.; Wei, J.-J.; Li, C.-M. Synthesis of h-BN/diamond heterojunctions and its electrical characteristics. Acta Phys. Sin. 2022, 71, 228101. [Google Scholar] [CrossRef]
- Fei, H.; Sang, D.; Zou, L.; Ge, S.; Yao, Y.; Fan, J.; Wang, C.; Wang, Q. Research progress of optoelectronic devices based on diamond materials. Front. Phys. 2023, 11, 1226374. [Google Scholar] [CrossRef]
- Yuan, X.; Liu, J.; Shao, S.; Liu, J.; Wei, J.; Da, B.; Li, C.; Koide, Y. Thermal stability investigation for Ohmic contact properties of Pt, Au, and Pd electrodes on the same hydrogen-terminated diamond. AIP Adv. 2020, 10, 055114. [Google Scholar] [CrossRef]
- Kocyigit, A.; Yıldız, D.E.; Erdal, M.O.; Tataroglu, A.; Yıldırım, M. Investigation of AlN-based Schottky type photodetector in visible light detection. Phys. B Condens. Matter 2024, 690, 416286. [Google Scholar] [CrossRef]
- Gu, K.; Zhang, Z.; Huang, H.; Tang, K.; Huang, J.; Liao, M.; Wang, L. Tailoring photodetection performance of self-powered Ga2O3 UV solar-blind photodetectors through asymmetric electrodes. J. Mater. Chem. C 2023, 11, 5371–5377. [Google Scholar] [CrossRef]
- Hussain, S.; Zhao, S.; Zhang, Q.; Tao, L. Comparative Analysis of Thin and Thick MoTe2 Photodetectors: Implications for Next-Generation Optoelectronics. Nanomaterials 2024, 14, 1804. [Google Scholar] [CrossRef]
- Galbiati, A.; Lynn, S.; Oliver, K.; Schirru, F.; Nowak, T.; Marczewska, B.; Duenas, J.A.; Berjillos, R.; Martel, I.; Lavergne, L. Performance of Monocrystalline Diamond Radiation Detectors Fabricated Using TiW, Cr/Au and a Novel Ohmic DLC/Pt/Au Electrical Contact. IEEE Trans. Nucl. Sci. 2009, 56, 1863–1874. [Google Scholar] [CrossRef]
- Du, Y.; Li, Y.; Chen, J.; Shi, D.; Guo, E.; Zhang, H.; Wang, Z.; Qin, Q.; Zou, C.; Zhai, T.; et al. Liquid-Metal-Assisted Synthesis of Patterned GaN Thin Films for High-Performance UV Photodetectors Array. Small Methods 2024, 8, e2300175. [Google Scholar] [CrossRef]
- Li, X.-X.; Zeng, G.; Li, Y.-C.; Zhang, H.; Ji, Z.-G.; Yang, Y.-G.; Luo, M.; Hu, W.-D.; Zhang, D.W.; Lu, H.-L. High responsivity and flexible deep-UV phototransistor based on Ta-doped β-Ga2O3. npj Flex. Electron. 2022, 6, 47. [Google Scholar] [CrossRef]
- Shikata, S.; Matsuyama, Y.; Teraji, T. Dislocation analysis of homoepitaxial diamond (001) film by x-ray topography. Jpn. J. Appl. Phys. 2019, 58, 045503. [Google Scholar] [CrossRef]
- Su, K.; Ren, Z.; Zhang, J.; Liu, L.; Zhang, J.; Zhang, Y.; He, Q.; Zhang, C.; Ouyang, X.; Hao, Y. High performance hydrogen/oxygen terminated CVD single crystal diamond radiation detector. Appl. Phys. Lett. 2020, 116, 092104. [Google Scholar] [CrossRef]
- Lin, C.-N.; Zhang, Z.-F.; Lu, Y.-J.; Yang, X.; Zhang, Y.; Li, X.; Zang, J.-H.; Pang, X.-C.; Dong, L.; Shan, C.-X. High performance diamond-based solar-blind photodetectors enabled by Schottky barrier modulation. Carbon 2022, 200, 510–516. [Google Scholar] [CrossRef]
- Cao, X.; Liu, K.; Wu, D.; Zhou, Z.; Lin, P.; Zhuo, R.; Shi, Z.; Hu, X.; Zeng, L.; Li, X. Highly sensitive full solar-blind ultraviolet spectrum detection and imaging based on PdSe2/Ga2O3 vdW heterojunction. Opt. Lett. 2024, 49, 5324–5327. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, M.; Jia, Z.; Qiu, M.; Chen, X.; Cai, J.; Yang, M.; Shen, Y.; Liu, C.; Chee, K.W.A.; Jiang, N.; et al. A High-Performance All-Carbon Diamond Pixel Solar-Blind Detector with In Situ Converted Graphene Electrodes. Materials 2025, 18, 1222. https://doi.org/10.3390/ma18061222
Jiang M, Jia Z, Qiu M, Chen X, Cai J, Yang M, Shen Y, Liu C, Chee KWA, Jiang N, et al. A High-Performance All-Carbon Diamond Pixel Solar-Blind Detector with In Situ Converted Graphene Electrodes. Materials. 2025; 18(6):1222. https://doi.org/10.3390/ma18061222
Chicago/Turabian StyleJiang, Mingxin, Zhenglin Jia, Mengting Qiu, Xingqiao Chen, Jiayi Cai, Mingyang Yang, Yi Shen, Chaoping Liu, Kuan W. A. Chee, Nan Jiang, and et al. 2025. "A High-Performance All-Carbon Diamond Pixel Solar-Blind Detector with In Situ Converted Graphene Electrodes" Materials 18, no. 6: 1222. https://doi.org/10.3390/ma18061222
APA StyleJiang, M., Jia, Z., Qiu, M., Chen, X., Cai, J., Yang, M., Shen, Y., Liu, C., Chee, K. W. A., Jiang, N., Nishimura, K., Li, Q., Yuan, Q., & Li, H. (2025). A High-Performance All-Carbon Diamond Pixel Solar-Blind Detector with In Situ Converted Graphene Electrodes. Materials, 18(6), 1222. https://doi.org/10.3390/ma18061222