Experimental Investigation and Prediction of Mechanical Properties of Carbonate Rocks Under Uniaxial and Triaxial Compressions
Highlights
- Empirical relationships are proposed to predict the compressive strength and Young’s modulus of carbonate rocks.
- The uniaxial compressive strength and Young’s modulus showed a power relationship with porosity.
- Triaxial compressive strength showed a linear relationship with the porosity and confining pressure.
- The expanded wing crack model showed a good predictability of the triaxial compressive strength with a mean bias of 1.07.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Uniaxial Compressive Strength (UCS)
2.1.1. Sample Preparation and Test Equipment
2.1.2. Uniaxial Compression Testing
2.1.3. UC Data of Carbonate Rocks from the Literature
2.2. Triaxial Compressive Strength ()
2.2.1. Conventional Triaxial Compression Testing
Rock Formation | Country of Origin | n, % | UCS, MPa | E, GPa | Reference |
---|---|---|---|---|---|
Madison Limestone | Wyoming, USA | 6.50–8.00 | 26.65–76.65 | NA | [25] |
Yarka Limestone | Judea group in Israel | 15.70–17.90 | 38.70–71.00 | 6.20–8.40 | [26] |
Devonian Limestone | Turkey | 1.14–4.12 | 74.20–138.10 | 16.68–46.23 | [27] |
Savonnieres Limestone | Jordan | 30.60–36.10 | 11.20–17.00 | NA | [28] |
Brauvilliers Limestone | 27.00–33.70 | 11.90–23.20 | NA | ||
Anstrude Limestone | 18.10–21.90 | 41.10–58.10 | NA | ||
Kirechane Limestone | Turkey | 4.90–33.90 | 7.32–24.06 | NA | [29] |
Miocene Limestone | Budapest, Hungary | 11.40–52.20 | 0.63–27.6 | 0.47–10.30 | [30] |
Akveren Limestone | Turkey | 2.20–2.60 | 28.00–33.00 | 49.00–58.69 | [31] |
Akiyoshi Limestone | Japan | 0.50–0.90 | 75.00–101.00 | NA | [32] |
Asmari Limestone | Iran | 2.04–7.21 | 50.40–84.20 | NA | [33] |
Indiana Limestone | Canada | 14.80 | 61.00 | NA | [34] |
Reef Limestone | South China sea | 2.30 | 42.00 | NA | [35] |
Triassic Dolostone | Italy | 0.76–4.70 | 47.29–112.00 | 2.38–18.80 | [36] |
Brecciated Dolostone | 1.40–4.60 | 15.18–109.65 | 2.67–18.09 | ||
Weathered Limestone | Netherlands | 8.10 | 39.00 | 37.00 | [37] |
Artificial fine-grained Gypsum rock | 35.00 | 8.00 | 2.00 | ||
Medium grained Calcarenite | 50.10 | 6.00 | NA | ||
Detrital Limestone | 19.80 | 22.00 | 9.00 | ||
Fine-grained Limestone | 37.90 | 31.00 | 12.00 | ||
15.70 | 57.00 | 24.00 | |||
Weathered Dolomite | 12.70 | 39.00 | 38.00 | ||
Weathered Limestone | 8.10 | 39.00 | 37.00 | ||
Fine-grained Dolomite | 10.70 | 67.00 | 32.00 | ||
Fine-grained Marble | 0.40 | 94.00 | 49.00 | ||
Fresh micritic fine grained Limestone | 5.40 | 101.00 | 26.00 | ||
Fine-grained micritic Limestone | 4.90 | 74.00 | 52.00 | ||
Coarse crystalline Limestone | 1.10 | 85.00 | 59.00 | ||
Medium grained Limestone | 3.80 | 174.00 | 59.00 | ||
1.00 | 176.00 | 78.00 | |||
0.60 | 159.00 | 76.00 | |||
0.70 | 203.00 | 80.00 | |||
Fine-grained Limestone | 0.50 | 163.00 | 69.00 | ||
Crystalline Limestone, china | 0.80 | 186.00 | 70.00 | ||
Morawica | Poland | 3.40 | 120.00 | 58.00 | [38] |
Tonnerre Limestone | France | 13.70 | 72.40 | 19.30 | |
Chauvigny Limestone | 17.40 | 42.00 | 16.30 | ||
Lavoux Limestone | 21.80 | 30.40 | 13.80 | ||
Louny Gauze | Poland | 26.00 | 58.00 | 9.20 | |
Lixhe Chalk | Belgium | 42.00 | 7.70 | 3.80 | |
Karaman Travertine | Turkey | 2.15–13.27 | 45.40–112.30 | NA | [39] |
Danian Chalk | Texas, USA | 43.05 | 11.00 | NA | [40] |
Austin Chalk | 25.75 | 25.00 | NA | ||
Devonian Limestone | Texas, USA | 2.30 | 78.45 | NA | [41] |
Fusselman Limestone | 3.00 | 39.23 | NA | ||
Wolfcamp Limestone | New Mexico, USA | 4.20 | 110.82 | NA | |
Soignies Limestone | Belgium | 0.40 | 170.00 | NA | [42] |
0.40 | 139.00 | 13.20 | |||
Moca Limestone | 8.00 | 79.00 | NA | ||
Sorcy Limestone | 30.00 | 47.00 | NA |
Sample | Specimen ID | Rock Type | Formation | Geological Age | n, % | , MPa | , MPa |
---|---|---|---|---|---|---|---|
25 | 25 a | Limestone | Madison | Mississippian | 7.93 | 1 | 38.61 |
25 b | 2.60 | 4 | 90.05 | ||||
25 c | 3.23 | 10 | 31.68 | ||||
27 | 27 b | Limestone | Goose Egg | Permian | 11.96 | 1 | 67.03 |
27 c | 12.18 | 2 | 63.00 | ||||
27 d | 12.23 | 8 | 119.54 | ||||
47 | 47 b | Limestone | Jefferson | Devonian | 1.55 | 4 | 52.77 |
47 c | 1.90 | 10 | 146.74 | ||||
28 | 28 b | Granite | NA | Precambrian | 0.69 | 1 | 34.67 |
28 c | 0.72 | 6 | 154.61 | ||||
28 d | 0.98 | 10 | 200.22 | ||||
55 | 55 a | Granite | Sherman | Proterozoic | 4.85 | 4 | 66.26 |
55 b | 4.38 | 10 | 125.28 | ||||
45 | 45 b | Dolostone | Big Horn | Ordovician | 8.27 | 4 | 79.56 |
45 c | 8.09 | 10 | 38.55 |
2.2.2. Triaxial Data of Carbonate Rocks from the Literature
3. Results
3.1. Results of Uniaxial Compressive Strength (UCS)
Relationship Between UCS and Porosity
3.2. Results of Triaxial Compressive Strength ()
Effect of Porosity and Confining Pressure
3.3. Young’s Modulus (E)
4. Discussion
4.1. Expanded Wing Crack Model
4.1.1. Background
4.1.2. Validation of the Expanded Wing Crack Model
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tucker, M.E.; Wright, V.P. Carbonate Sedimentology; John Wiley & Sons: Hoboken, NJ, USA; Blackwell: London, UK, 2009. [Google Scholar]
- Lisabeth, H.P.; Zhu, W. Effect of temperature and pore fluid on the strength of porous limestone. J. Geophys. Res. Solid Earth 2015, 120, 6191–6208. [Google Scholar] [CrossRef]
- Dehghan, S.; Sattari, G.H.; Chelgani, S.C.; Aliabadi, M.A. Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural networks. Min. Sci. Technol. 2010, 20, 41–46. [Google Scholar] [CrossRef]
- Miščević, P.; Vlastelica, G. Impact of weathering on slope stability in soft rock mass. J. Rock Mech. Geotech. Eng. 2014, 6, 240–250. [Google Scholar] [CrossRef]
- Rzhevsky, V.; Novick, G. The Physics of Rocks; MIR Publ.: New Delhi, India, 1971; p. 320. [Google Scholar]
- Farquhar, R.A.; Somerville, J.M.; Smart, B.G.D. Porosity as a geomechanical indicator: An application of core and log data and rock mechanics. In Proceedings of the SPE Europec Featured at EAGE Conference and Exhibition, London, UK, 25–27 October 1994; p. SPE-28853. [Google Scholar]
- Beiki, M.; Majdi, A.; Givshad, A.D. Application of genetic programming to predict the uniaxial compressive strength and elastic modulus of carbonate rocks. Int. J. Rock Mech. Min. Sci. 2013, 63, 159–169. [Google Scholar] [CrossRef]
- Hebib, R.; Belhai, D.; Alloul, B. Estimation of uniaxial compressive strength of North Algeria sedimentary rocks using density, porosity, and Schmidt hardness. Arab. J. Geosci. 2017, 10, 1–13. [Google Scholar] [CrossRef]
- Fereidooni, D.; Karimi, Z.; Ghasemi, F. Non-destructive test-based assessment of uniaxial compressive strength and elasticity modulus of intact carbonate rocks using stacking ensemble models. PLoS ONE 2024, 19, e0302944. [Google Scholar] [CrossRef]
- Palchik, V.; Hatzor, Y.H. Correlation between mechanical strength and microstructural parameters of dolomites and limestones in the Judea group, Israel. Isr. J. Earth Sci. 2000, 49, 65–79. [Google Scholar]
- Ng, K.; Santamarina, J.C. Mechanical and hydraulic properties of carbonate rock: The critical role of porosity. J. Rock Mech. Geotech. Eng. 2023, 15, 814–825. [Google Scholar] [CrossRef]
- Scott, T.E.; Nielsen, K.C. The effects of porosity on the brittle-ductile transition in sandstones. J. Geophys. Res. Solid Earth 1991, 96, 405–414. [Google Scholar] [CrossRef]
- Ameen, M.S.; Smart, B.G.D.; Somerville, J.M.; Hammilton, S.; Naji, N.A. Predicting rock mechanical properties of carbonates from wireline logs (A case study: Arab-D reservoir, Ghawar field, Saudi Arabia). Mar. Pet. Geol. 2009, 26, 430–444. [Google Scholar] [CrossRef]
- Asef, M.R.; Farrokhrouz, M. Governing parameters for approximation of carbonates UCS. Electron. J. Geotech. Eng. 2010, 15, 1581–1592. [Google Scholar]
- Bakun-Mazor, D.; Ben-Ari, Y.; Marco, S.; Ben-Dor, E. Predicting Mechanical Properties of Carbonate Rocks Using Spectroscopy Across 0.4–12 μm. Rock Mech. Rock Eng. 2024, 57, 8951–8968. [Google Scholar] [CrossRef]
- Hatzor, Y.H.; Palchik, V. A microstructure-based failure criterion for Aminadav dolomites. Int. J. Rock Mech. Min. Sci. 1998, 35, 797–805. [Google Scholar] [CrossRef]
- Alomari, E.; Ng, K.; Khatri, L. An Expanded Wing Crack Model for Fracture and Mechanical Behavior of Sandstone Under Triaxial Compression. Materials 2024, 17, 5973. [Google Scholar] [CrossRef]
- Ashby, M.F.; Hallam, S.D. The failure of brittle solids containing small cracks under compressive stress states. Acta Metall. 1986, 34, 497–510. [Google Scholar] [CrossRef]
- Perry, W.J.; Ahlbrandt, T.S. Carbonate rocks of the Wyoming thrust belt and their petroleum potential. Am. Assoc. Pet. Geol. Bull. 1989, 73, 184–197. [Google Scholar]
- AASHTO T-100; Standard Method of Test for Specific Gravity of Soils. American Association of State Highway and Transportation Officials: Washington, DC, USA, 2022.
- Khatri, L. Improving Design and Construction of Transportation Infrastructure Through Bedrock Characterization. Master Thesis, University of Wyoming, Laramie, WY, USA, 2022. [Google Scholar]
- Zoback, M.D. Reservoir Geomechanics; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Scholz, C.H. The Mechanics of Earthquakes and Faulting; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Yang, S.-Q.; Huang, Y.-H.; Tian, W.-L. Influence of water saturation and real-time testing temperature on mechanical behavior of sandstone under conventional triaxial compression. Rock Mech. Rock Eng. 2021, 54, 4355–4367. [Google Scholar] [CrossRef]
- Ng, K.; Yu, H.; Wang, H.; Kaszuba, J.; Alvarado, V.; Grana, D.; Campbell, E. Geomechanical investigation of the carbon sequestration reservoir at Rock Springs Uplift, Wyoming, USA. In Proceedings of the 53rd ARMA US Rock Mechanics/Geomechanics Symposium, New York City, NY, USA, 23–26 June 2019; p. ARMA-2019. [Google Scholar]
- Palchik, V. Mechanical behavior of carbonate rocks at crack damage stress equal to uniaxial compressive strength. Rock Mech. Rock Eng. 2010, 43, 497–503. [Google Scholar] [CrossRef]
- Zarif, I.H.; Tuğrul, A. Aggregate properties of Devonian limestones for use in concrete in Istanbul, Turkey. Bull. Eng. Geol. Environ. 2003, 62, 379–388. [Google Scholar] [CrossRef]
- Moh’d, B.K. Compressive strength of vuggy oolitic limestones as a function of their porosity and sound propagation. Jordan J. Earth Environ. Sci. 2009, 2, 18–25. [Google Scholar]
- Ceryan, N.; Okkan, U.; Kesimal, A. Prediction of unconfined compressive strength of carbonate rocks using artificial neural networks. Environ. Earth Sci. 2013, 68, 807–819. [Google Scholar] [CrossRef]
- Vásárhelyi, B. Technical note statistical analysis of the influence of water content on the strength of the Miocene limestone. Rock Mech. Rock Eng. 2005, 38, 69–76. [Google Scholar] [CrossRef]
- Kurtuluş, C.; Sertçelik, F.A.D.İ.M.E.; Sertçelik, I. Correlating physico-mechanical properties of intact rocks with P-wave velocity. Acta Geod. Geophys. 2016, 51, 571–582. [Google Scholar] [CrossRef]
- Kawakita, M.; Kinoshita, S. The dynamic fracture properties of rocks under confining pressure. Mem. Fac. Eng. Hokkaido Univ. 1981, 15, 467–478. [Google Scholar]
- Jamshidi, A.; Zamanian, A.; Sahamieh, R.Z. The effect of density and porosity on the correlation between uniaxial compressive strength and P-wave velocity. Rock Mech. Rock Eng. 2018, 51, 1279–1286. [Google Scholar] [CrossRef]
- Walton, G.; Hedayat, A.; Kim, E.; Labrie, D. Post-yield strength and dilatancy evolution across the brittle–ductile transition in Indiana limestone. Rock Mech. Rock Eng. 2017, 50, 1691–1710. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, C.; Zheng, K.; Ma, C.; Yi, M. Crack initiation and damage evolution of micritized framework reef limestone in the South China Sea. Rock Mech. Rock Eng. 2021, 54, 5591–5601. [Google Scholar] [CrossRef]
- Pappalardo, G. Correlation between P-wave velocity and physical–mechanical properties of intensely jointed dolostones, Peloritani mounts, NE Sicily. Rock Mech. Rock Eng. 2015, 48, 1711–1721. [Google Scholar] [CrossRef]
- Verwaal, W.; Mulder, A. Estimating rock strength with the Equotip hardness tester. In International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts; Elsevier Science: Amsterdam, The Netherlands, 1993; pp. 659–662. [Google Scholar]
- Fabre, D.; Gustkiewicz, J. Poroelastic properties of limestones and sandstones under hydrostatic conditions. Int. J. Rock Mech. Min. Sci. 1997, 34, 127–134. [Google Scholar] [CrossRef]
- Kahraman, S.A.I.R.; Gunaydin, O.; Fener, M. The effect of porosity on the relation between uniaxial compressive strength and point load index. Int. J. Rock Mech. Min. Sci. 2005, 42, 584–589. [Google Scholar] [CrossRef]
- Blanton, T.L. Deformation of chalk under confining pressure and pore pressure. Soc. Pet. Eng. J. 1981, 21, 43–50. [Google Scholar] [CrossRef]
- Handin, J.; Hager, R.V. Experimental deformation of sedimentary rocks under confining pressures: Test at Room Temperature of Dry Samples, Bull. Am. Assoc. Petrol. 1957, 41, 1–50. [Google Scholar]
- Descamps, F.; Tshibangu, J.-P.; Ramos da Silva, M.; Schroeder, C.; Verbrugge, J.-C. Behaviour of carbonated rocks under true triaxial compression. In Proceedings of the ISRM Congress, Beijing, China, 16 October 2011; p. ISRM-12CONGRESS. [Google Scholar]
- Descamps, F.; Tshibangu, J.P. Modelling the limiting envelopes of rocks in the octahedral plane. Oil Gas Sci. Technol. -Rev. De L’ifp 2007, 62, 683–694. [Google Scholar] [CrossRef]
- Baud, P.; Vinciguerra, S.; David, C.; Cavallo, A.; Walker, E.; Reuschlé, T. Compaction and failure in high porosity carbonates: Mechanical data and microstructural observations. Pure Appl. Geophys. 2009, 166, 869–898. [Google Scholar] [CrossRef]
- Chitty, D.E.; Blouin, S.E.; Sun, X.; Kim, K.J. Laboratory Investigation and Analysis of the Strength and Deformation of Joints and Fluid Flow in Salem Limestone. DNA-TR-93-63; Applied Research Associates Inc.: South Royalton, VT, USA, 1994. [Google Scholar]
- Vajdova, V.; Baud, P.; Wong, T.-F. Compaction, dilatancy, and failure in porous carbonate rocks. J. Geophys. Res. Solid Earth 2004, 109, B5. [Google Scholar] [CrossRef]
- Vajdova, V.; Baud, P.; Wu, L.; Wong, T.-F. Micromechanics of inelastic compaction in two allochemical limestones. J. Struct. Geol. 2012, 43, 100–117. [Google Scholar] [CrossRef]
- Schwartz, A.E. Failure of rock in the triaxial shear test. In 6th ARMA US Rock Mechanics/Geomechanics Symposium; ARMA: Rolla, Missouri, 28–30 October 1964; p. ARMA-64. [Google Scholar]
- Nicolas, A.; Fortin, J.; Regnet, J.B.; Dimanov, A.; Guéguen, Y. Brittle and semi-brittle behaviours of a carbonate rock: Influence of water and temperature. Geophys. J. Int. 2016, 206, 438–456. [Google Scholar] [CrossRef]
- Nicolas, A.; Fortin, J.; Regnet, J.B.; Verberne, B.A.; Plümper, O.; Dimanov, A.; Spiers, C.J.; Guéguen, Y. Brittle and semibrittle creep of Tavel limestone deformed at room temperature. J. Geophys. Res. Solid Earth 2017, 122, 4436–4459. [Google Scholar] [CrossRef]
- Castagna, A.; Ougier-Simonin, A.; Benson, P.M.; Browning, J.; Walker, R.J.; Fazio, M.; Vinciguerra, S. Thermal damage and pore pressure effects of the Brittle-Ductile transition in comiso limestone. J. Geophys. Res. Solid Earth 2018, 123, 7644–7660. [Google Scholar] [CrossRef]
- Baud, P.; Schubnel, A.; Wong, T.-F. Dilatancy, compaction, and failure mode in Solnhofen limestone. J. Geophys. Res. 2000, B8, 19289–19303. [Google Scholar] [CrossRef]
- Byerlee, J.D. The brittle-ductile transition in rocks. J. Geophys. 1968, 73, 4741–4750. [Google Scholar] [CrossRef]
- Edmond, J.M.; Paterson, M.S. Volume changes during the deformation of rocks at high pressures. Int. J. Rock Mech. Min. Sci 1972, 9, 161–182. [Google Scholar] [CrossRef]
- Heard, H.C. Transitions from brittle to ductile flow in Solnhofen limestone as a function of temperature, confining pressure, and interstitial fluid pressure. In Rock Deformation (A Symposium); Geological Society of America: McLean, VA, USA, 1960; pp. 133–192. [Google Scholar]
- Mogi, K. Experimental Rock Mechanics; CRC Press: Boca Raton, FL, USA, 2007; Volume 3. [Google Scholar]
- Liu, D.; Liu, C.; Kang, Y.; Guo, B.; Jiang, Y. Mechanical behavior of Benxi Formation limestone under triaxial compression: A new post-peak constitutive model and experimental validation. Bull. Eng. Geol. Environ. 2018, 77, 1701–1715. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, L.; Wang, W.; Wan, W.; Li, S.; Ma, W.; Wang, Y. Creep behavior of intact and cracked limestone under multi-level loading and unloading cycles. Rock Mech. Rock Eng. 2017, 50, 1409–1424. [Google Scholar] [CrossRef]
- Meng, Q.-B.; Wang, C.-K.; Liu, J.-F.; Zhang, M.-W.; Lu, M.-M.; Wu, Y. Physical and micro-structural characteristics of limestone after high temperature exposure. Bull. Eng. Geol. Environ. 2020, 79, 1259–1274. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, J.; Guo, J.; Luo, Y.; Wang, H.; Liu, Q. Acoustic emission characteristics and energy mechanism in karst limestone failure under uniaxial and triaxial compression. Bull. Eng. Geol. Environ. 2019, 78, 1427–1442. [Google Scholar] [CrossRef]
- Fredrich, J.T.; Evans, B.; Wong, T.-F. Micromechanics of the brittle to plastic transition in Carrara marble. J. Geophys. Res. Solid Earth 1989, 94, 4129–4145. [Google Scholar] [CrossRef]
- Gerogiannopoulos, N. A Critical State Approach to Rock Mechanics. Ph.D. Thesis, Imperial College London, University of London, London, UK, 1976. [Google Scholar]
- Paterson, M.S. Experimental deformation and faulting in Wombeyan Marble. Geol. Soc. Am. Bull. 1958, 69, 465–476. [Google Scholar] [CrossRef]
- Handin, J.; Heard, H.C.; Magouirk, J.N. Effects of the intermediate principal stress on the failure of limestone, dolomite, and glass at different temperatures and strain rates. J. Geophys. Res. 1967, 72, 611–640. [Google Scholar] [CrossRef]
- Renner, J.; Rummel, F. The effect of experimental and microstructural parameters on the transition from brittle failure to cataclastic flow of carbonate rocks. Tectonophysics 1996, 258, 151–169. [Google Scholar] [CrossRef]
- Brantut, N.; Han, R.; Shimamoto, T.; Findling, N.; Schubnel, A. Fast slip with inhibited temperature rise due to mineral dehydration: Evidence from experiments on gypsum. Geology 2011, 39, 59–62. [Google Scholar] [CrossRef]
- Yagiz, S. Predicting uniaxial compressive strength, modulus of elasticity and index properties of rocks using the Schmidt hammer. Bull. Eng. Geol. Environ. 2009, 68, 55–63. [Google Scholar] [CrossRef]
- Yu, H.; Ng, K.; Grana, D.; Kaszuba, J.; Alvarado, V.; Campbell, E. Experimental investigation of the effect of compliant pores on reservoir rocks under hydrostatic and triaxial compression stress states. Can. Geotech. J. 2019, 56, 983–991. [Google Scholar] [CrossRef]
- Kutner, M.H. (Ed.) Applied Linear Statistical Models, 5th ed.; The McGraw-Hill/Irwin Series Operations and Decision Sciences; McGraw-Hill Irwin: Boston, MA, USA, 2005. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: http://www.R-project.org/ (accessed on 10 February 2025).
- Sun, W.; Wang, L.; Wang, Y. Mechanical properties of rock materials with related to mineralogical characteristics and grain size through experimental investigation: A comprehensive review. Front. Struct. Civ. Eng. 2017, 11, 322–328. [Google Scholar] [CrossRef]
- Klein, C.; Hurlbut, C.S. Manual of Mineralogy (after James D. Dana). Mineral. Mag. 1993, 58, 524–526. [Google Scholar]
- Atkinson, B.K. Fracture Mechanics of Rock; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Ludovico-Marques, M.; Chastre, C.; Vasconcelos, G. Modelling the compressive mechanical behaviour of granite and sandstone historical building stones. Construction and Building. Materials 2012, 28, 372–381. [Google Scholar]
- Yilmaz, I. Influence of water content on the strength and deformability of gypsum. Int. J. Rock Mech. Min. Sci. 2010, 47, 342–347. [Google Scholar] [CrossRef]
- Golubev, A.A.; Rabinovich, G.Y. Resultaty primeneia appartury akusticeskogo karotasa dlja predeleina proconstych svoistv gornych porod na mestorosdeniaach tverdych isjopaemych. Prikl. Geofiz. 1976, 73, 109–116. [Google Scholar]
- Martínez-Martínez, J.; Benavente, D.; García-del-Cura, M.A. Comparison of the static and dynamic elastic modulus in carbonate rocks. Bull. Eng. Geol. Environ. 2012, 71, 263–268. [Google Scholar] [CrossRef]
- Xinbin, Y.; Yunhong, D.; Xin, W.; Haibing, L. A new method to estimate rock mechanics composed both the dynamic and static test means. Appl. Mech. Mater. 2013, 275-277, 286–289. [Google Scholar]
- Roehl, P.O.; Choquette, P.W. Perspectives on world-class carbonate petroleum reservoirs. AAPG Bull. 1985, 69, 148. [Google Scholar]
- Atkinson, B.K.; Meredith, P.G. Experimental fracture mechanics data for rocks and minerals. Fract. Mech. Rock 1987, 477–525. [Google Scholar]
- Ashby, M.F.; Sammis, C.G. The damage mechanics of brittle solids in compression. Pure Appl. Geophys. 1990, 133, 489–521. [Google Scholar] [CrossRef]
Rock Type | Formation | Geological Age | n, % | UCS, MPa | E, GPa |
---|---|---|---|---|---|
Limestone | Goose Egg | Permian | 12.41 | 61.27 | 29.61 |
Limestone | Jefferson | Devonian | 2.12 | 11.33 | 15.37 |
Granite | NA | Precambrian | 0.81 | 87.97 | 34.41 |
Granite | Sherman | Proterozoic | 3.49 | 26.77 | 17.01 |
Dolostone | Big Horn | Ordovician | 8.50 | 23.13 | 9.83 |
Formation, (Location) | Country of Origin | n, % | , MPa | , MPa | Reference |
---|---|---|---|---|---|
Soignies Limestone | Belgium | 0.40 | 2–90 | 206.00–443.00 | [43] |
Soignies Limestone | Mons-Belgium | 0.40 | 30–90 | 265.00–428.00 | [42] |
Moca Limestone | 8.00 | 10–40 | 140.00–220.00 | ||
Sorcy Limestone | 29.50 | 5–10 | 47.00–71.00 | ||
Saint Maximin Limestone | Italy, France | 37.00 | 3–6 | 20.00–25.00 | [44] |
Salem/Indiana Limestone | United States | 16.90 | 25–400 | 87.00–544.00 | [45] |
Tavel Limestone | United States | 10.40 | 10–50 | 221.00–313.00 | [46] |
Indiana Limestone | United States, Italy | 13.40 | 5–10 | 45.00–62.00 | [46,47] |
Indiana Limestone | United States | 19.40 | 7–69 | 65.50–174.40 | [48] |
White Tavel Limestone | France | 14.70 | 20–85 | 181.33–430.00 | [49,50] |
Comiso Limestone | Italy | 10.10 | 7–30 | 123.23–214.41 | [51] |
Solnhofen Limestone | Germany | 3.00 | 10–50 | 336.00–478.00 | [52] |
Solnhofen Limestone | United States | 4.80 | 17–81 | 277.00–491.00 | [53] |
Solnhofen Limestone | Italy | 5.90 | 100–800 | 530.00–1730.00 | [54] |
Solnhofen Limestone | Germany | 1.70 | 20–500 | 493.00–1264.00 | [55] |
Solnhofen Limestone | United States | 4.80 | 0.1–98 | 270.76–490.33 | [53] |
Intact Solnhofen Limestone | NA | 3.70–5.50 | 6–195 | 311.00–703.00 | [56] |
Oak Hall Limestone | United States | 0.30 | 18–220 | 388.00–1000.00 | [53] |
Indiana Limestone | Canada | 0.15 | 2–50 | 75.00–173.00 | [34] |
Benxi Limestone | China | NA | 5–20 | 90–180 | [57] |
Maokou Limestone | China | 0.09 | 4–12 | 80.90–170.00 | [58] |
Reef Limestone | South China Sea | 0.02 | 1–8 | 63.00–181.00 | [35] |
Xuzhou Limestone | NA | NA | 5–30 | 110.00–157.00 | [59] |
Comiso Limestone | Italy | 0.10 | 7–50 | 123.23–214.41 | [51] |
Karst Limestone | China | NA | 5–25 | 131.00–288.00 | [60] |
Majella Grainstone | Italy, France | 30.00 | 5–21 | 32–46 | [44] |
Georgia Marble | United States | 2.70 | 7–69 | 83.00–228.00 | [48] |
Carrara Marble | Italy | 1.10 | 50–800 | 270.00–1530.00 | [61] |
Carrara Marble | NA | 1.10 | 1.72–34.5 | 80.31–247.99 | [62] |
Carrara Marble | Italy | 1.10 | 5–450 | 100.00–770.00 | [61] |
Wombeyan Marble | Australia | 0.90 | 0.1–98 | 69.73–332.45 | [63] |
Blair Dolomite | Germany | 0.90 | 50–450 | 549.00–1760.00 | [64] |
Cold-pressed Aragonite | Germany | 10.60–22.30 | 10–195 | 84.00–661.00 | [65] |
Cold-pressed Calcite | 6.90–16.20 | 10–150 | 89.00–500.00 | ||
Cold-pressed Solnhofen Limestone | 7.40–15.80 | 10–150 | 96.00–485.00 | ||
Gypsum | Italy | 0.50 | 2–95 | 19.80–83.00 | [66] |
Rock Type | Equation from Literature | Equation from Literature | Reference | Testing Dataset Size | Our Proposed Equation (2) | ||
---|---|---|---|---|---|---|---|
RMSE | MAD | RMSE | MAD | ||||
Carbonate rocks | 48.64 | 37.15 | [6] | 76 | 29.29 | 21.8 | |
Carbonate rocks, n < 0.3 | 23.79 | 17.64 | [8] | 60 | 31.16 | 25.72 | |
Dolomite | 51.51 | 49.08 | [10] | 8 | 27.96 | 22.49 | |
Gypsum (2 data pts) | 33.69 | 33.68 | [75] | 2 | 4.24 | 3.04 | |
Limestone | 24.3 | 28.79 | [76] | 64 | 24.3 | 27.02 | |
Dolomite | 23.92 | 19.21 | 8 | 27.96 | 22.49 | ||
Limestone and Dolomite | 103.84 | 69.73 | [5] | 72 | 22.33 | 13.7 | |
Carbonate rocks with 0.05 < n < 0.2 and 30 < UCS < 150 | 46.9 | 40.03 | 57 | 33.1 | 26.77 | ||
Carbonate rocks with 0.05 < n< 0.2 and 30 < UCS < 150 | 44.95 | 51.12 | 57 | 26.77 | 33.1 | ||
Carbonate rocks | 32.71 | 26.07 | [7] | 76 | 26.39 | 17.48 |
Rock Type | Equation | Reference | Testing Dataset Size | Equation from Literature | Our Proposed Equation (6) | ||
---|---|---|---|---|---|---|---|
RMSE | MAD | RMSE | MAD | ||||
Carbonate rocks | [7] | 66 | 20.02 | 14.87 | 15.8 | 10.72 | |
Carbonate rocks, n < 0.3 | [13] | 46 | 35.94 | 31.95 | 18.89 | 14.89 | |
Carbonate rocks, n < 0.3 | [14] | 46 | 13.49 | 19.47 | 10.72 | 15.8 | |
Carbonate rocks | [6] | 66 | 15.21 | 10.35 | 15.8 | 10.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alomari, E.; Ng, K.; Khatri, L. Experimental Investigation and Prediction of Mechanical Properties of Carbonate Rocks Under Uniaxial and Triaxial Compressions. Materials 2025, 18, 1211. https://doi.org/10.3390/ma18061211
Alomari E, Ng K, Khatri L. Experimental Investigation and Prediction of Mechanical Properties of Carbonate Rocks Under Uniaxial and Triaxial Compressions. Materials. 2025; 18(6):1211. https://doi.org/10.3390/ma18061211
Chicago/Turabian StyleAlomari, Esraa, Kam Ng, and Lokendra Khatri. 2025. "Experimental Investigation and Prediction of Mechanical Properties of Carbonate Rocks Under Uniaxial and Triaxial Compressions" Materials 18, no. 6: 1211. https://doi.org/10.3390/ma18061211
APA StyleAlomari, E., Ng, K., & Khatri, L. (2025). Experimental Investigation and Prediction of Mechanical Properties of Carbonate Rocks Under Uniaxial and Triaxial Compressions. Materials, 18(6), 1211. https://doi.org/10.3390/ma18061211