Production and Quality Assessment of Fertilizer Pellets from Compost with Sewage Sludge Ash (SSA) Addition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Determination of the Moisture Content of the Raw Materials
2.3. Determination of the Granulometric Distribution of the Raw Materials
2.4. Determination of the Bulk Density of the Raw Materials
2.5. Determination of the Ash Content
2.6. Determination of the Contents of Macronutrients
2.7. Determination of the Presence of Trace Elements and Heavy Metals
2.8. Pressure Agglomeration Process
- wm = 17—the moisture content of the mixture [%];
- do = 6—the mixture mass flow rate [mm];
- Qm = 50—the mixture mass flow rate [kgh−1];
- nr = 270—the rotational speed of the densifying roller system [rpm];
- hr = 0.3—the gap between the rollers and the die [mm].
2.9. Determination of the Kinetic Strength of the Pellets
2.10. Determination of the Physical and Bulk Density of Pellets
2.11. Determination of the Water Absorption Capacity of Pellets
2.12. Statistical Analysis
3. Results and Discussion
3.1. Moisture Content of Tested Raw Materials
3.2. Bulk Density and Ash Content of Raw Materials
3.3. Granulometric Distribution of Tested Raw Materials
3.4. Contents of Macronutrients
3.5. Heavy Metal Contents
3.6. The Pelleting Process and the Characteristics of Pellets
3.7. Tests of the Pressure Agglomeration Process
3.7.1. Pellet Density
3.7.2. Bulk Density of Pellets
3.7.3. Kinetic Strength of Produced Pellets
3.8. Water Absorption Capacity of Produced Pellets
3.9. Statistical Analysis of Obtained Results
4. Conclusions
- Before the pressure agglomeration process, the compost must be dried so that the average moisture content of the compacted mixture of compost and ash does not exceed approx. 18–20%. Such a moisture content makes it possible to obtain a product (pellets) of satisfactory quality in terms of density and kinetic strength. A lower moisture content (below 12%) may cause the mixture to sinter on the die, which may ultimately lead to immobilization of the working system of the pellet mill. A higher moisture content (above 20%) will result in the deterioration of the physical parameters of the pellets.
- The compost obtained from Przedsiębiorstwo Usługowo-Handlowo-Produkcyjne ‘LECH’ Sp. z o.o. contained small amounts of undesirable (from the point of view of its use as a potential fertilizer) inclusions, such as particles of foil, glass, or stones, as well as compost particles that were too large (from the point of view of the implementation of the pelleting process), e.g., pieces of branches or wood. Therefore, the compost should be crushed and then sieved before the pressure agglomeration (pelleting) process is carried out, to remove these undesirable inclusions.
- The use of the addition of ash produced through the incineration of sewage sludge, supplied by O-PAL Sp. z o.o., allowed us to obtain granulated fertilizer material with good physical properties. Increasing the SSA content in a mixture with compost from 0 to 50% caused a slight increase in the density of the pellets, by approx. 2.6% (from 1641.17 kg·m−3 to 1684.09 kg·m−3). The addition of SSA also caused an increase in the bulk density of the pellets by approx. 14% (from 786.28 kg·m−3 to 899.96 kg·m−3).
- Ash produced through the incineration of sewage sludge (SSA) was characterized by higher contents of phosphorus (50.09 g·kgd.m.−1), magnesium (7.77 g·kgd.m.−1), and sulfur (7.74 g·kgd.m.−1) compared to the tested compost, which contained 3.25 g·kgd.m.−1 of phosphorus, 1.55 g·kgd.m.−1 of magnesium, and 1.57 g·kgd.m.−1 of sulfur. The nitrogen and potassium contents of both the raw materials were similar, at 14.83 g·kgd.m.−1 and 12.92 g·kgd.m.−1 for SSA and 15.29 g·kgd.m.−1 and 13.05 g·kgd.m.−1 for compost. The pellets containing SSA exhibited increased contents of phosphorus, magnesium, and sulfur with an increase in the share of SSA in the mixture, which indicates the possibility of enrichment in these components.
- Ash produced through the incineration of sewage sludge was characterized by higher contents of heavy metals (Cr, Ni, Cu, Zn, As, Cd, and Pb) compared to compost. The content of chromium in the SSA (207.16 mg·kgd.m.−1) exceeded the permissible standard for organic fertilizers (100 mg·kgd.m.−1). The co-pelletization of SSA with compost enabled a reduction in the Cr content, making it possible to use as much as 40% of the mixture without exceeding the set limit of 100 mg·kgd.m.−1.
- The low water absorption capacity, ranging from 47.84 to 51.3%, indicates that the produced pellets can be considered soil improvers with slow release into the soil. The use of ash produced through the incineration of sewage sludge, supplied by O-PAL Sp. z o.o., added to the compost, resulted in a decrease in the water absorption of the obtained pellets.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krejcirikova, B.; Ottosen, L.M.; Kirkelund, G.M.; Rode, C.; Peuhkuri, R. Characterization of Sewage Sludge Ash and Its Effect on Moisture Physics of Mortar. J. Build. Eng. 2019, 21, 396–403. [Google Scholar] [CrossRef]
- Gao, N.; Kamran, K.; Quan, C.; Williams, P.T. Thermochemical Conversion of Sewage Sludge: A Critical Review. Prog. Energy Combust. Sci. 2020, 79, 100843. [Google Scholar] [CrossRef]
- Wang, Q.; Wei, W.; Gong, Y.; Yu, Q.; Li, Q.; Sun, J.; Yuan, Z. Technologies for Reducing Sludge Production in Wastewater Treatment Plants: State of the Art. Sci. Total Environ. 2017, 587–588, 510–521. [Google Scholar] [CrossRef] [PubMed]
- Ferrentino, R.; Langone, M.; Fiori, L.; Andreottola, G. Full-Scale Sewage Sludge Reduction Technologies: A Review with a Focus on Energy Consumption. Water 2023, 15, 615. [Google Scholar] [CrossRef]
- Semblante, G.U.; Hai, F.I.; Bustamante, H.; Price, W.E.; Nghiem, L.D. Effects of Sludge Retention Time on Oxic-Settling-Anoxic Process Performance: Biosolids Reduction and Dewatering Properties. Bioresour. Technol. 2016, 218, 1187–1194. [Google Scholar] [CrossRef]
- Mejdi, M.; Saillio, M.; Chaussadent, T.; Divet, L.; Tagnit-Hamou, A. Hydration Mechanisms of Sewage Sludge Ashes Used as Cement Replacement. Cem. Concr. Res. 2020, 135, 106115. [Google Scholar] [CrossRef]
- Internetowa Baza Tekstów Prawnych OpenLEX. Available online: https://sip.lex.pl (accessed on 23 March 2024).
- Council Directive 86/278/EEC of 12 June 1986 on the Protection of the Environment, and in Particular of the Soil, When Sewage Sludge Is Used in Agriculture (86/278/EEC). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=oj:JOL_1986_181_R_TOC (accessed on 28 February 2025).
- Brusselaers, J.; Van Der Linden, A. Bio-Waste in Europe—Turning Challenges into Opportunities; EEA Report; European Environment Agency: Luxembourg, 2020; Available online: https://www.eea.europa.eu/en/analysis/publications/bio-waste-in-europe (accessed on 19 February 2025).
- Fytili, D.; Zabaniotou, A. Utilization of Sewage Sludge in EU Application of Old and New Methods—A Review. Renew. Sustain. Energy Rev. 2008, 12, 116–140. [Google Scholar] [CrossRef]
- Dolzynska, M.; Obidzinski, S. Effect of Used Cooking Oil Additive on Sewage Sludge Combustion. Przemysl Chem. 2017, 96, 1848–1851. [Google Scholar]
- Gu, C.; Ji, Y.; Zhang, Y.; Yang, Y.; Liu, J.; Ni, T. Recycling Use of Sulfate-Rich Sewage Sludge Ash (SR-SSA) in Cement-Based Materials: Assessment on the Basic Properties, Volume Deformation and Microstructure of SR-SSA Blended Cement Pastes. J. Clean. Prod. 2021, 282, 124511. [Google Scholar] [CrossRef]
- Kamyab, H.; Yuzir, A.; Ashokkumar, V.; Hosseini, S.E.; Balasubramanian, B.; Kirpichnikova, I. Review of the Application of Gasification and Combustion Technology and Waste-to-Energy Technologies in Sewage Sludge Treatment. Fuel 2022, 316, 123199. [Google Scholar]
- Lynn, C.J.; Dhir, R.K.; Ghataora, G.S.; West, R.P. Sewage Sludge Ash Characteristics and Potential for Use in Concrete. Constr. Build. Mater. 2015, 98, 767–779. [Google Scholar] [CrossRef]
- Liang, C.; Le, X.; Fang, W.; Zhao, J.; Fang, L.; Hou, S. The Utilization of Recycled Sewage Sludge Ash as a Supplementary Cementitious Material in Mortar: A Review. Sustainability 2022, 14, 4432. [Google Scholar] [CrossRef]
- Chen, Z.; Poon, C.S. Comparative Studies on the Effects of Sewage Sludge Ash and Fly Ash on Cement Hydration and Properties of Cement Mortars. Constr. Build. Mater. 2017, 154, 791–803. [Google Scholar] [CrossRef]
- Chen, Z.; Poon, C.S. Comparing the Use of Sewage Sludge Ash and Glass Powder in Cement Mortars. Environ. Technol. 2017, 38, 1390–1398. [Google Scholar] [CrossRef]
- Li, J.-S.; Guo, M.-Z.; Xue, Q.; Poon, C.S. Recycling of Incinerated Sewage Sludge Ash and Cathode Ray Tube Funnel Glass in Cement Mortars. J. Clean. Prod. 2017, 152, 142–149. [Google Scholar] [CrossRef]
- Buta, M.; Hubeny, J.; Zieliński, W.; Harnisz, M.; Korzeniewska, E. Sewage Sludge in Agriculture—The Effects of Selected Chemical Pollutants and Emerging Genetic Resistance Determinants on the Quality of Soil and Crops—A Review. Ecotoxicol. Environ. Saf. 2021, 214, 112070. [Google Scholar] [CrossRef] [PubMed]
- Breda, C.C.; Soares, M.B.; Tavanti, R.F.R.; Viana, D.G.; Freddi, O.D.S.; Piedade, A.R.; Mahl, D.; Traballi, R.C.; Guerrini, I.A. Successive Sewage Sludge Fertilization: Recycling for Sustainable Agriculture. Waste Manag. 2020, 109, 38–50. [Google Scholar] [CrossRef]
- Gazola, R.d.N.; Buzetti, S.; Teixeira Filho, M.C.M.; Gazola, R.P.D.; Celestrino, T.d.S.; Silva, A.C.d.; Silva, P.H.M.d. Potassium Fertilization of Eucalyptus in an Entisol in Low-Elevation Cerrado. Rev. Bras. Ciênc. Solo 2019, 43, e0180085. [Google Scholar] [CrossRef]
- Rodrigues, A.F.; Novotny, E.H.; Knicker, H.; de Oliveira, R.R. Humic Acid Composition and Soil Fertility of Soils near an Ancient Charcoal Kiln: Are They Similar to Terra Preta de Índios Soils? J. Soils Sediments 2019, 19, 1374–1381. [Google Scholar] [CrossRef]
- Latare, A.M.; Kumar, O.; Singh, S.K.; Gupta, A. Direct and Residual Effect of Sewage Sludge on Yield, Heavy Metals Content and Soil Fertility under Rice–Wheat System. Ecol. Eng. 2014, 69, 17–24. [Google Scholar] [CrossRef]
- Dubey, M.; Mohapatra, S.; Tyagi, V.K.; Suthar, S.; Kazmi, A.A. Occurrence, Fate, and Persistence of Emerging Micropollutants in Sewage Sludge Treatment. Environ. Pollut. 2021, 273, 116515. [Google Scholar] [CrossRef] [PubMed]
- Lü, H.; Chen, X.-H.; Mo, C.-H.; Huang, Y.-H.; He, M.-Y.; Li, Y.-W.; Feng, N.-X.; Katsoyiannis, A.; Cai, Q.-Y. Occurrence and Dissipation Mechanism of Organic Pollutants during the Composting of Sewage Sludge: A Critical Review. Bioresour. Technol. 2021, 328, 124847. [Google Scholar] [CrossRef]
- Czekała, W.; Nowak, M.; Bojarski, W. Anaerobic Digestion and Composting as Methods of Bio-Waste Management. Agric. Eng. 2023, 27, 173–186. [Google Scholar] [CrossRef]
- Sienkiewicz, A.; Cwalina, P.; Obidziński, S.; Krasowska, M.; Kowczyk-Sadowy, M.; Piotrowska-Niczyporuk, A.; Bajguz, A. Potential for Using Composts Produced from Agri-Food Industry Waste as Biocomponents of Liquid and Solid Fuels. Energies 2024, 17, 6412. [Google Scholar] [CrossRef]
- Ezzariai, A.; Hafidi, M.; Khadra, A.; Aemig, Q.; El Fels, L.; Barret, M.; Merlina, G.; Patureau, D.; Pinelli, E. Human and Veterinary Antibiotics during Composting of Sludge or Manure: Global Perspectives on Persistence, Degradation, and Resistance Genes. J. Hazard. Mater. 2018, 359, 465–481. [Google Scholar] [CrossRef]
- Siebielska, I.; Sidełko, R. Polychlorinated Biphenyl Concentration Changes in Sewage Sludge and Organic Municipal Waste Mixtures during Composting and Anaerobic Digestion. Chemosphere 2015, 126, 88–95. [Google Scholar] [CrossRef]
- Guo, Y.; Rene, E.R.; Wang, J.; Ma, W. Biodegradation of Polyaromatic Hydrocarbons and the Influence of Environmental Factors during the Co-Composting of Sewage Sludge and Green Forest Waste. Bioresour. Technol. 2020, 297, 122434. [Google Scholar] [CrossRef] [PubMed]
- Huygens, D.; Saveyn, H.; Tonini, D.; Eder, P.; Delgado Sancho, L. Technical Proposals for Selected New Fertilising Materials Under the Fertilising Products Regulation (Regulation (EU) 2019/1009). Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Jiang, L.; Yuan, X.; Xiao, Z.; Liang, J.; Li, H.; Cao, L.; Wang, H.; Chen, X.; Zeng, G. A Comparative Study of Biomass Pellet and Biomass-Sludge Mixed Pellet: Energy Input and Pellet Properties. Energy Convers. Manag. 2016, 126, 509–515. [Google Scholar] [CrossRef]
- Omara, A.E.-D.; Hafez, E.M.; Osman, H.S.; Rashwan, E.; El-Said, M.A.; Alharbi, K.; Abd El-Moneim, D.; Gowayed, S.M. Collaborative Impact of Compost and Beneficial Rhizobacteria on Soil Properties, Physiological Attributes, and Productivity of Wheat Subjected to Deficit Irrigation in Salt Affected Soil. Plants 2022, 11, 877. [Google Scholar] [CrossRef]
- Cwalina, P.; Krasowska, M.; Smolewska, M.E.; Koziak, K. Effect of Composting Ashes from Biomass Combustion on Polycyclic Aromatic Hydrocarbon Content. Energies 2024, 17, 840. [Google Scholar] [CrossRef]
- Goldan, E.; Nedeff, V.; Barsan, N.; Culea, M.; Panainte-Lehadus, M.; Mosnegutu, E.; Tomozei, C.; Chitimus, D.; Irimia, O. Assessment of Manure Compost Used as Soil Amendment—A Review. Processes 2023, 11, 1167. [Google Scholar] [CrossRef]
- Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Source. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02018L2001-20231120 (accessed on 23 March 2024).
- PN-EN ISO 18134-3:2023-12; Solid Biofuels—Determination of Moisture Content—Part 3: Moisture in the Sample for Bulk Analysis. Polish Committee for Standardization: Warsaw, Poland, 2023.
- PN-R-64798:2009; Feed—Determination of Fineness. Polish Committee for Standardization: Warsaw, Poland, 2009.
- PN-EN ISO 17830:2016-07; Solid Biofuels—Grain Composition of Crushed Pellets. Polish Committee for Standardization: Warsaw, Poland, 2016.
- PN-EN ISO 18122:2023-05; Solid Biofuels—Determination of Ash Content. Polish Committee for Standardization: Warsaw, Poland, 2023.
- Obidziński, S.; Cwalina, P.; Kowczyk-Sadowy, M.; Sienkiewicz, A.; Krasowska, M.; Szyszlak-Bargłowicz, J.; Zając, G.; Kryński, R. Effect of the Addition of Elderberry Waste to Sawdust on the Process of Pelletization and the Quality of Fuel Pellets. Energies 2024, 17, 1508. [Google Scholar] [CrossRef]
- PN–EN ISO 17831-1:2016-02; Solid Biofuels—Determination of Mechanical Durability of Pellets and Briquettes. ISO: Geneva, Switzerland, 2016.
- Obidziński, S.; Cwalina, P.; Kowczyk-Sadowy, M.; Sienkiewicz, A.; Krasowska, M.; Szyszlak-Bargłowicz, J.; Zając, G.; Słowik, T.; Mazur, J.; Jankowski, M. Physical and Energy Properties of Fuel Pellets Produced from Sawdust with Potato Pulp Addition. Energies 2024, 17, 3960. [Google Scholar] [CrossRef]
- PN-G-04652:1997; Formed Fuels—Determination of Water Absorption and Water Resistance. Polish Committee for Standardization: Warsaw, Poland, 1997.
- Bajwa, D.S.; Peterson, T.; Sharma, N.; Shojaeiarani, J.; Bajwa, S.G. A Review of Densified Solid Biomass for Energy Production. Renew. Sustain. Energy Rev. 2018, 96, 296–305. [Google Scholar] [CrossRef]
- Ajaweed, A.N.; Hassan, F.M.; Hyder, N.H. Evaluation of Physio-Chemical Characteristics of Bio Fertilizer Produced from Organic Solid Waste Using Composting Bins. Sustainability 2022, 14, 4738. [Google Scholar] [CrossRef]
- Fertilizing Value of Composts and Vermicomposts from Plant Waste and Industrial and Municipal Wastewater Sludge. Available online: http://www.zb.eco.pl/inne/kompost2/ar.htm (accessed on 10 January 2025).
- Pulka, J.; Manczarski, P.; Stępień, P.; Styczyńska, M.; Koziel, J.A.; Białowiec, A. Waste-to-Carbon: Is the Torrefied Sewage Sludge with High Ash Content a Better Fuel or Fertilizer? Materials 2020, 13, 954. [Google Scholar] [CrossRef] [PubMed]
- Krzywy, E.; Ciubak, J.; Cydzik, E.; Możdżer, E.; Kucharska, M. Use of Municipal Sewage Sludge and Brown Coal Ash for the Production of Fertilizer Granulates. Chemik 2012, 66, 1163–1168. [Google Scholar]
- Kulikowska, D.; Bernat, K.; Zielińska, M.; Zaborowska, M. Composting of Sewage Sludge in a Two-Stage System and Compost Characteristics. Gaz Woda Tech. Sanit. 2022. [Google Scholar] [CrossRef]
- Latosińska, J. Risk Assessment of Soil Contamination with Heavy Metals from Sewage Sludge and Ash after Its Incineration. Desalin. Water Treat. 2020, 199, 297–306. [Google Scholar] [CrossRef]
- Haustein, E.; Kuryłowicz-Cudowska, A.; Łuczkiewicz, A.; Fudala-Książek, S.; Cieślik, B.M. Influence of Cement Replacement with Sewage Sludge Ash (SSA) on the Heat of Hydration of Cement Mortar. Materials 2022, 15, 1547. [Google Scholar] [CrossRef]
- Park, N.; Kim, M.; Jung, J.; Ji, S.; Kim, W. New Strategy to Maximize Phosphorus Utilization of Sewage Sludge Incineration Ash for Struvite Crystallization. Water 2024, 16, 1682. [Google Scholar] [CrossRef]
- Jama-Rodzeńska, A.; Sowiński, J.; Koziel, J.A.; Białowiec, A. Phosphorus Recovery from Sewage Sludge Ash Based on Cradle-to-Cradle Approach—Mini-Review. Minerals 2021, 11, 985. [Google Scholar] [CrossRef]
- Czop, M.; Żydek, K. Study of the Fertilizer Value of Selected Composts from Green Waste. Arch. Gospod. Odpad. Ochr. Śr. 2017, 19, 39–52. [Google Scholar]
- Ciesielczuk, T.; Rosik-Dulewska, C. Advantages and disadvantages of remedial use of waste composts. Pract. Inst. Ceram. Mater. Bud. 2012, R. 5, 316–332. [Google Scholar]
- Magdziarz, A.; Wilk, M.; Gajek, M.; Nowak-Woźny, D.; Kopia, A.; Kalemba-Rec, I.; Koziński, J.A. Properties of Ash Generated during Sewage Sludge Combustion: A Multifaceted Analysis. Energy 2016, 113, 85–94. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, Z.; Xu, W.; Zhang, K.; Tang, Y.; Cheng, G.; He, X.; Dai, B. High-Temperature Ash Melting and Fluidity Behavior upon the Cocombustion of Sewage Sludge and Coal. ACS Omega 2024, 9, 14455–14464. [Google Scholar] [CrossRef]
- Godlewska, A.; Becher, M. The Effect of Waste Materials on the Content of Some Macroelements in Test Plants. J. Ecol. Eng. 2021, 22, 167–174. [Google Scholar] [CrossRef]
- Luyckx, L.; Van Caneghem, J. Recovery of Phosphorus from Sewage Sludge Ash: Influence of Incineration Temperature on Ash Mineralogy and Related Phosphorus and Heavy Metal Extraction. J. Environ. Chem. Eng. 2021, 9, 106471. [Google Scholar] [CrossRef]
- Gondek, K.; Kopec, M. Content of Selected Macro and Microelements in Composted Municipal Biodegradable Waste. Acta Agrophysica 2012, 19, 527–538. [Google Scholar]
- Baldi, M.; Martinotti, A.; Sorlini, S.; Katsoyiannis, I.A.; Abbà, A.; Carnevale Miino, M.; Collivignarelli, M.C. Extraction and Purification of Phosphorus from the Ashes of Incinerated Biological Sewage Sludge. Water 2021, 13, 1102. [Google Scholar] [CrossRef]
- Regulation of the Minister of Agriculture and Rural. Development of 9 August 2024 on the Implementation of Certain Provisions of the Act on Fertilizers and Fertilization (Journal of Laws 2024, Item 1261). Available online: https://sip.lex.pl/akty-prawne/dzu-dziennik-ustaw/wykonanie-niektorych-przepisow-ustawy-o-nawozach-i-nawozeniu-22037830 (accessed on 19 February 2025).
- Feng, C.; Cheng, M.; Gao, X.; Qiao, Y.; Xu, M. Occurrence Forms and Leachability of Inorganic Species in Ash Residues from Self-Sustaining Smouldering Combustion of Sewage Sludge. Proc. Combust. Inst. 2021, 38, 4327–4334. [Google Scholar] [CrossRef]
- Mujtaba, G.; Hayat, R.; Hussain, Q.; Ahmed, M. Physio-Chemical Characterization of Biochar, Compost and Co-Composted Biochar Derived from Green Waste. Sustainability 2021, 13, 4628. [Google Scholar] [CrossRef]
- Malarski, M.; Wichowski, P.; Czajkowska, J. Heavy Metals in Fly Ash as a Factor Limiting Its Use in Fertilizing Composts. Water 2023, 15, 2247. [Google Scholar] [CrossRef]
- Smolinska, B. Green Waste Compost as an Amendment during Induced Phytoextraction of Mercury-Contaminated Soil. Environ. Sci. Pollut. Res. 2015, 22, 3528–3537. [Google Scholar] [CrossRef]
- Xiao, Z.; Yuan, X.; Leng, L.; Jiang, L.; Chen, X.; Zhibin, W.; Xin, P.; Jiachao, Z.; Zeng, G. Risk Assessment of Heavy Metals from Combustion of Pelletized Municipal Sewage Sludge. Environ. Sci. Pollut. Res. 2016, 23, 3934–3942. [Google Scholar] [CrossRef]
- Kleemann, R.; Chenoweth, J.; Clift, R.; Morse, S.; Pearce, P.; Saroj, D. Comparison of Phosphorus Recovery from Incinerated Sewage Sludge Ash (ISSA) and Pyrolysed Sewage Sludge Char (PSSC). Waste Manag. 2017, 60, 201–210. [Google Scholar] [CrossRef]
- Thomsen, T.P.; Sárossy, Z.; Ahrenfeldt, J.; Henriksen, U.B.; Frandsen, F.J.; Müller-Stöver, D.S. Changes Imposed by Pyrolysis, Thermal Gasification and Incineration on Composition and Phosphorus Fertilizer Quality of Municipal Sewage Sludge. J. Environ. Manag. 2017, 198, 308–318. [Google Scholar] [CrossRef]
- Latosińska, J.; Czapik, P. The Ecological Risk Assessment and the Chemical Speciation of Heavy Metals in Ash after the Incineration of Municipal Sewage Sludge. Sustainability 2020, 12, 6517. [Google Scholar] [CrossRef]
- Liu, C.; Yue, C.; Ma, Y. Pollutant Emissions and Heavy Metal Migration in Co-Combustion of Sewage Sludge and Coal. Energies 2024, 17, 2457. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, W.; Zhao, R.; Malik, N.; Yin, J.; Chen, Y. Investigation on Solidified/Stabilized Behavior of Marine Soil Slurry by Lime-Activated Incinerated Sewage Sludge Ash-Ground Granulated Blast Furnace Slag under Multifactor Conditions. J. Rock Mech. Geotech. Eng. 2024, 16, 5264–5277. [Google Scholar] [CrossRef]
- Ottosen, L.M.; Thornberg, D. Phosphorous Extraction and Heavy Metal Separation from Sewage Sludge Ash by Two-Compartment Electrodialysis in an Upscaled Tube Reactor. Environ. Sci. Pollut. Res. 2023, 30, 117881–117891. [Google Scholar] [CrossRef]
- Voća, N.; Leto, J.; Karažija, T.; Bilandžija, N.; Peter, A.; Kutnjak, H.; Šurić, J.; Poljak, M. Energy Properties and Biomass Yield of Miscanthus x Giganteus Fertilized by Municipal Sewage Sludge. Molecules 2021, 26, 4371. [Google Scholar] [CrossRef]
- Sarlaki, E.; Kermani, A.M.; Kianmehr, M.H.; Asefpour Vakilian, K.; Hosseinzadeh-Bandbafha, H.; Ma, N.L.; Aghbashlo, M.; Tabatabaei, M.; Lam, S.S. Improving Sustainability and Mitigating Environmental Impacts of Agro-Biowaste Compost Fertilizer by Pelletizing-Drying. Environ. Pollut. 2021, 285, 117412. [Google Scholar] [CrossRef] [PubMed]
- Čajová Kantová, N.; Belány, P.; Holubčík, M.; Čaja, A. Energy Consumption Depending on the Durability of Pellets Formed from Sawdust with an Admixture of FFP2 Masks. Energies 2022, 15, 4813. [Google Scholar] [CrossRef]
- Mieldazys, R.; Jotautiene, E.; Gaudutis, A.; Jasinskas, A. Comparison of Physical Mechanical Properties of Granulated Fertilizer Produced from Composted Cattle and Dried Cow, Pig and Poultry Manure. In Proceedings of the 22st International Scientific Conference “Engineering for Rural Development”, Jelgava, Latvia, 24–26 May 2023. [Google Scholar]
- Papandrea, S.F.; Cataldo, M.F.; Palma, A.; Gallucci, F.; Zimbalatti, G.; Proto, A.R. Pelletization of Compost from Different Mixtures with the Addition of Exhausted Extinguishing Powders. Agronomy 2021, 11, 1357. [Google Scholar] [CrossRef]
- PN-EN ISO 17225-1:2021-11; Solid Biofuels—Fuel Specifications and Grades—Part 1: General Requirements. ISO: Geneva, Switzerland, 2021.
- Hettiarachchi, L.G.; Jayathillake, N.; Fernando, S.; Gunawardena, S. Effects of Compost Particle Size, Moisture Content and Binding Agents on Co-Compost Pellet Properties. Int. J. Agric. Biol. Eng. 2019, 12, 184–191. [Google Scholar] [CrossRef]
- Siyal, A.A.; Liu, Y.; Mao, X.; Ali, B.; Husaain, S.; Dai, J.; Zhang, T.; Fu, J.; Liu, G. Characterization and Quality Analysis of Wood Pellets: Effect of Pelletization and Torrefaction Process Variables on Quality of Pellets. Biomass Convers. Biorefinery 2021, 11, 2201–2217. [Google Scholar] [CrossRef]
- Ungureanu, N.; Vladut, V.; Voicu, G.; Dinca, M.-N.; Zabava, B.-S. Influence of Biomass Moisture Content on Pellet Properties–Review. Eng. Rural Dev. 2018, 17, 1876–1883. [Google Scholar]
- Pitaktamrong, P.; Kingkaew, J.; Yooyongwech, S.; Cha-Um, S.; Phisalaphong, M. Development of Arbuscular Mycorrhizal Fungi-Organic Fertilizer Pellets Encapsulated with Alginate Film. Eng. J. 2018, 22, 65–79. [Google Scholar] [CrossRef]
Raw Material | Waste Content in Mixture [%] | Moisture ± SD [%] |
---|---|---|
SSA | 10 | 17.01 ± 0.09 * |
20 | 16.92 ± 0.11 * | |
30 | 16.88 ± 0.16 * | |
40 | 16.99 ± 0.08 * | |
50 | 16.73 ± 0.12 * | |
100 | 0.26 ± 0.02 | |
Compost in raw state (taken from heap) | 100 | 48.99 ± 0.33 |
Dried compost | 100 | 7.51 ± 0.11 |
100 | 17.03 ± 0.15 * |
Material | Share of Fraction [%] | ||||||||
---|---|---|---|---|---|---|---|---|---|
8 | 4 | 2 | 1 | 0.5 | 0.25 | 0.125 | 0.063 | <0.063 | |
Compost | 0.00 | 0.00 | 1.22 | 46.82 | 35.29 | 9.23 | 4.89 | 2.55 | 0.00 |
SSA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3.89 | 30.43 | 61.02 | 4.66 |
Material | Nitrogen ± SD | Phosphorus ± SD | Potassium ± SD | Magnesium ± SD | Sulfur ± SD |
---|---|---|---|---|---|
[g·kgd.m.−1] | |||||
SSA | 14.83 ± 0.26 | 50.09 ± 0.41 | 12.92 ± 0.10 | 7.77 ± 0.06 | 7.74 ± 0.08 |
Compost | 15.29 ± 0.24 | 3.25 ± 0.13 | 13.05 ± 0.11 | 1.55 ± 0.09 | 1.57 ± 0.04 |
Pellets containing SSA [%] | |||||
10 | 15.24 | 7.94 | 13.03 | 2.18 | 2.19 |
20 | 15.19 | 12.62 | 13.02 | 2.80 | 2.80 |
30 | 15.15 | 17.30 | 13.00 | 3.42 | 3.42 |
40 | 15.11 | 21.99 | 12.99 | 4.04 | 4.04 |
50 | 15.06 | 26.67 | 12.98 | 4.66 | 4.65 |
Material | Cr ± SD | Ni ± SD | Cu ± SD | Zn ± SD | As ± SD | Cd ± SD | Pb ± SD |
---|---|---|---|---|---|---|---|
[mg·kgd.m.−1] | |||||||
SSA | 207.16 ± 11.71 | 59.56 ± 0.48 | 574.04 ± 4.38 | 1944.83 ± 11.73 | 9.46 ± 0.29 | 11.28 ± 0.53 | 93.89 ± 0.82 |
Compost | 22.79 ± 0.82 | 7.24 ± 0.43 | 37.50 ± 0.79 | 286.36 ± 2.01 | 0.00 | 0.00 | 32.82 ± 0.69 |
Pellets containing SSA [%] | |||||||
10 | 41.22 | 12.47 | 91.16 | 452.21 | 0.95 | 1.13 | 38.93 |
20 | 59.66 | 17.70 | 144.81 | 618.05 | 1.89 | 2.26 | 45.04 |
30 | 78.10 | 22.94 | 198.46 | 783.90 | 2.84 | 3.38 | 51.14 |
40 | 96.54 | 28.17 | 252.12 | 949.75 | 3.78 | 4.51 | 57.25 |
50 | 114.97 | 33.40 | 305.77 | 1115.60 | 4.73 | 5.64 | 63.36 |
Maximum concentration [63] | 100 | 60 | - | - | - | 5 | 140 |
SSA Content [%] | Density ± SD [kg·m−3] | Bulk Density ± SD [kg·m−3] | Kinetic Strength ± SD [%] |
---|---|---|---|
0 | 1641.17 ± 23.11 | 786.28 ± 11.18 | 98.21 ± 0.12 |
10 | 1648.29 ± 26.92 | 800.11 ± 14.28 | 97.73 ± 0.19 |
20 | 1658.02 ± 24.18 | 807.77 ± 10.89 | 97.67 ± 0.09 |
30 | 1669.22 ± 19.02 | 814.44 ± 17.67 | 97.61 ± 0.11 |
40 | 1681.63 ± 29.37 | 828.04 ± 18.43 | 97.58 ± 0.18 |
50 | 1684.09 ± 26.62 | 899.96 ± 23.82 | 97.56 ± 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cwalina, P.; Obidziński, S.; Sienkiewicz, A.; Kowczyk-Sadowy, M.; Piekut, J.; Bagińska, E.; Mazur, J. Production and Quality Assessment of Fertilizer Pellets from Compost with Sewage Sludge Ash (SSA) Addition. Materials 2025, 18, 1145. https://doi.org/10.3390/ma18051145
Cwalina P, Obidziński S, Sienkiewicz A, Kowczyk-Sadowy M, Piekut J, Bagińska E, Mazur J. Production and Quality Assessment of Fertilizer Pellets from Compost with Sewage Sludge Ash (SSA) Addition. Materials. 2025; 18(5):1145. https://doi.org/10.3390/ma18051145
Chicago/Turabian StyleCwalina, Paweł, Sławomir Obidziński, Aneta Sienkiewicz, Małgorzata Kowczyk-Sadowy, Jolanta Piekut, Ewelina Bagińska, and Jacek Mazur. 2025. "Production and Quality Assessment of Fertilizer Pellets from Compost with Sewage Sludge Ash (SSA) Addition" Materials 18, no. 5: 1145. https://doi.org/10.3390/ma18051145
APA StyleCwalina, P., Obidziński, S., Sienkiewicz, A., Kowczyk-Sadowy, M., Piekut, J., Bagińska, E., & Mazur, J. (2025). Production and Quality Assessment of Fertilizer Pellets from Compost with Sewage Sludge Ash (SSA) Addition. Materials, 18(5), 1145. https://doi.org/10.3390/ma18051145