Micro-Alloying Effects on Microstructure and Weldability of High-Strength Low-Alloy Steel: A Review
Abstract
:1. Introduction
2. Effect of Micro-Alloying Elements on CGHAZ
2.1. Ce
2.2. Al
2.3. Mg
2.4. Nb
2.5. B
2.6. V
2.7. N
2.8. Ti
3. Conclusions and Perspectives
- (1)
- Synergistic mechanism of microalloying elements
- (2)
- Development of high-performance welding materials
- (3)
- Combination of physical models and numerical simulations
- (4)
- Effect of inclusions on AF nucleation mechanism
- (5)
- Optimization of microstructure and properties of CGHAZ
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HSLA | High-strength low-alloy |
CGHAZ | Coarse-grained heat-affected zone |
HAZ | Heat-affected zone |
FGHAZ | Fine-grained or recrystallization heat-affected zone |
ICHAZ | Intercritical heat-affected zone |
M/A islands | Martensite-austenite (M/A) islands |
AF | Acicular ferrite |
Ce | Cerium |
Al | Aluminum |
Mg | Magnesium |
PF | Polygonal ferrite |
IAF | Intragranular acicular ferrite |
A | Al deoxidation |
LM | Low-content Mg deoxidation |
HM | High-content Mg deoxidation |
Nb | Niobium |
B | Boron |
IGF | Intragranular ferrite |
HAADF STEM | High-angle annular dark field scanning transmission electron microscopy |
SEM | Scanning electron microscope |
EDS | Energy dispersive spectrometer |
V | Vanadium |
MDZ | Mn-depletion zone |
N | Nitrogen |
GBF | Grain boundary ferrite |
IGAF | Intergranular acicular ferrite |
PAG | Prior austenite grain boundaries |
Ti | Titanium |
References
- Bajaj, P.; Hariharan, A.; Kini, A.; Kürnsteiner, P.; Raabe, D.; Jägle, E.A. Steels in additive manufacturing: A review of their microstructure and properties. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2020, 772, 138633. [Google Scholar] [CrossRef]
- Li, K.; Yang, T.B.; Gong, N.; Wu, J.Z.; Wu, X.; Zhang, D.Z.; Murr, L.E. Additive manufacturing of ultra-high strength steels: A review. J. Alloys Compd. 2023, 965, 171390. [Google Scholar] [CrossRef]
- Li, J.; Zhan, D.; Jiang, Z.; Zhang, H.; Yang, Y.; Zhang, Y. Progress on improving strength-toughness of ultra-high strength martensitic steels for aerospace applications: A review. J. Mater. Res. Technol. 2023, 23, 172–190. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.; Du, H.; Zhang, Y.; Ma, H. Effect of Ca deoxidation on toughening of heat-affected zone in high-strength low-alloy steels after large-heat-input welding. Metals 2022, 12, 1830. [Google Scholar] [CrossRef]
- Wang, Y.D.; Tang, Z.H.; Xiao, S.F.; Siyasiya, C.W.; Wei, T. Effects of final rolling temperature and coiling temperature on precipitates and microstructure of high-strength low-alloy pipeline steel. J. Iron Steel Res. Int. 2022, 29, 1236–1244. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.H.; Xie, J.S.; Liu, S.J.; He, Y.Y.; Guan, K.; Wu, R.Z. Developing a low-alloyed fine-grained Mg alloy with high strength-ductility based on dislocation evolution and grain boundary segregation. Scr. Mater. 2022, 209, 114414. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, R.D.; Wu, F.F.; Lin, S.B.; Jiang, S.S.; Huang, Y.J.; Chen, S.H.; Eckert, J. Transformation-enhanced strength and ductility in a FeCoCrNiMn dual phase high-entropy alloy. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2020, 780, 139182. [Google Scholar] [CrossRef]
- Nuam, V.; Zhang, H.; Wang, Y.; Xiong, Z. Role of retained austenite in advanced high-strength steel: Ductility and toughness. J. Iron Steel Res. Int. 2024, 31, 2079–2089. [Google Scholar] [CrossRef]
- Pan, H.C.; Kang, R.; Li, J.R.; Xie, H.B.; Zeng, Z.R.; Huang, Q.Y.; Yang, C.L.; Ren, Y.P.; Qin, G.W. Mechanistic investigation of a low-alloy Mg-Ca-based extrusion alloy with high strength-ductility synergy. Acta Mater. 2020, 186, 278–290. [Google Scholar] [CrossRef]
- Yang, J.; Li, T. Development in oxide metallurgy for improving the weldability of high-strength low-alloy steel—Combined deoxidizers and microalloying elements. Int. J. Miner. Metall. Mater. 2024, 31, 1263–1284. [Google Scholar]
- Lazarević, M.; Bajić, D.M.; Marinković, J.; Alil, A. Cavitation resistance of explosively welded aluminium/steel joint. Tribol. Mater. 2024, 3, 67–72. [Google Scholar] [CrossRef]
- Wang, H.M.; Wang, Y.L. High-velocity impact welding process: A review. Metals 2019, 9, 144. [Google Scholar] [CrossRef]
- Zhang, T.L.; Li, Z.X.; Young, F.; Kim, H.J.; Li, H.; Jing, H.Y.; Tillmann, W. Global progress on welding consumables for HSLA steel. ISIJ Int. 2014, 54, 1472–1484. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Pal, T.K. Effect of shielding gas mixture on gas metal arc welding of HSLA steel using solid and flux-cored wires. Int. J. Adv. Manuf. Technol. 2006, 29, 262–268. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.J.; Hu, F.Y.; Fu, K.J.; Zhang, Z.Q.; Wu, Y.M. Effects of Ti/N ratio on coarse-grain heat-affected zone microstructure evolution and low-temperature impact toughness of high heat input welding steel. Coatings 2023, 13, 1347. [Google Scholar] [CrossRef]
- Sadeghian, M.; Shamanian, M.; Shafyei, A. Effect of heat input on microstructure and mechanical properties of dissimilar joints between super duplex stainless steel and high strength low alloy steel. Mater. Des. 2014, 60, 678–684. [Google Scholar] [CrossRef]
- Pandey, C.; Mahapatra, M.M.; Kumar, P.; Giri, A. Microstructure characterization and charpy toughness of P91 weldment for as-welded, post-weld heat treatment and normalizing & tempering heat treatment. Met. Mater. Int. 2017, 23, 900–914. [Google Scholar]
- Pandey, C.; Giri, A.; Mahapatra, M.M.; Kumar, P. Characterization of microstructure of HAZs in As-welded and service condition of P91 pipe weldments. Met. Mater. Int. 2017, 23, 148–162. [Google Scholar] [CrossRef]
- Li, Y.D.; Xing, W.W.; Li, X.B.; Chen, B.; Ma, Y.C.; Liu, K.; Min, Y. Effect of Mg addition on the microstructure and properties of a heat-affected zone in submerged Arc welding of an Al-killed low carbon steel. Materials 2021, 14, 2445. [Google Scholar] [CrossRef]
- Pandey, C.; Mahapatra, M.M.; Kumar, P.; Saini, N. Some studies on P91 steel and their weldments. J. Alloys Compd. 2018, 743, 332–364. [Google Scholar] [CrossRef]
- Zhang, C.G.; Yang, J.Z.; Hu, X.Z.; Lu, P.M.; Zhao, M.M. Microstructure characteristics and fatigue properties of welded HSLA with and without buffer layer. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2012, 546, 169–179. [Google Scholar] [CrossRef]
- Shi, M.H.; Zhang, P.Y.; Zhu, F.X. Toughness and microstructure of coarse grain heat affected zone with high heat input welding in Zr-bearing low carbon steel. ISIJ Int. 2014, 54, 188–192. [Google Scholar] [CrossRef]
- Shi, M.H.; Zhang, P.Y.; Wang, C.; Zhu, F.X. Effect of high heat input on toughness and microstructure of coarse grain heat affected zone in Zr bearing low carbon steel. ISIJ Int. 2014, 54, 932–937. [Google Scholar] [CrossRef]
- Xu, W.H.; Lin, S.B.; Fan, C.L.; Yang, C.L. Evaluation on microstructure and mechanical properties of high-strength low-alloy steel joints with oscillating arc narrow gap GMA welding. Int. J. Adv. Manuf. Technol. 2014, 75, 1439–1446. [Google Scholar] [CrossRef]
- Tümer, M.; Pixner, F.; Vallant, R.; Warchomicka, F.G.; Domitner, J.; Enzinger, N. Welding of S1100 ultra high-strength steel plates with matching metal-cored filler wire: Microstructure, residual stresses, and mechanical properties. Steel Res. Int. 2024, 95, 2300675. [Google Scholar] [CrossRef]
- Zhang, X.P.; Di, X.J.; Jing, W.; Zhou, X.F.; Zhang, C.Y.; Li, C.N. Effect of microstructural evolution on the mechanical properties of intercritical heat-affected zone of quenched-and-tempered ultrahigh-strength steel. Steel Res. Int. 2022, 93, 2100776. [Google Scholar] [CrossRef]
- Farrokhi, F.; Siltanen, J.; Salminen, A. Fiber Laser Welding of Direct-Quenched Ultrahigh Strength Steels: Evaluation of hardness, tensile strength, and toughness properties at subzero temperatures. J. Manuf. Sci. Eng. Trans. ASME 2015, 137, 061012. [Google Scholar] [CrossRef]
- Mu, W.Z.; Jönsson, P.G.; Nakajima, K. Recent aspects on the effect of inclusion characteristics on the intragranular ferrite formation in low alloy steels: A Review. J. Mater. Sci. Technol. 2017, 36, 309–325. [Google Scholar] [CrossRef]
- Shao, Y.; Liu, C.X.; Yan, Z.S.; Li, H.J.; Liu, Y.C. Formation mechanism and control methods of acicular ferrite in HSLA steels: A review. J. Mater. Sci. Technol. 2018, 34, 737–744. [Google Scholar] [CrossRef]
- Ma, Z.T.; Peisker, D.; Janke, D. Grain refining of structural steels by dispersion of fine oxide particles. Steel Res. 1999, 70, 178–182. [Google Scholar] [CrossRef]
- Liang, W.; Geng, R.M.; Zhi, J.G.; Li, J.; Huang, F. Oxide metallurgy technology in high strength steel: A Review. Materials 2022, 15, 1350. [Google Scholar] [CrossRef] [PubMed]
- Vervynckt, S.; Verbeken, K.; Lopez, B.; Jonas, J.J. Modern HSLA steels and role of non-recrystallisation temperature. Int. Mater. Rev. 2012, 57, 187–207. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Kou, D.X.; Chen, Z.Z.; Yang, F.; Ma, Y.L.; Li, Y.M. Evolution of microstructure in welding heat-affected zone of G115 steel with the different content of boron. Materials 2022, 15, 2053. [Google Scholar] [CrossRef]
- Xu, L.Y.; Yang, J.; Wang, R.Z.; Wang, W.L.; Wang, Y.N. Effect of Mg addition on formation of intragranular acicular ferrite in heat-affected zone of steel plate after high-heat-input welding. J. Iron Steel Res. Int. 2018, 25, 433–441. [Google Scholar] [CrossRef]
- Wang, C.; Misra, R.D.K.; Shi, M.H.; Zhang, P.Y.; Wang, Z.D.; Zhu, F.X.; Wang, G.D. Transformation behavior of a Ti–Zr deoxidized steel: Microstructure and toughness of simulated coarse grain heat affected zone. Mater. Sci. Eng. A 2014, 594, 218–228. [Google Scholar] [CrossRef]
- Huang, Y.R.; Jin, X.; Cai, G.J. Evolution of microstructure and mechanical properties of a new high strength steel containing Ce element. J. Mater. Res. 2017, 32, 3894–3903. [Google Scholar] [CrossRef]
- Geng, R.M.; Li, J.; Shi, C.B.; Zhi, J.G.; Lu, B. Effect of Ce on microstructures, carbides and mechanical properties in simulated coarse-grained heat-affected zone of 800-MPa high-strength low-alloy steel. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2022, 840, 142919. [Google Scholar] [CrossRef]
- Li, X.; Jiang, Z.H.; Geng, X.; Chen, M.J.; Peng, L.Z. Evolution mechanism of inclusions in H13 steel with rare earth magnesium alloy addition. ISIJ Int. 2019, 59, 1552–1561. [Google Scholar] [CrossRef]
- Yang, J.; Xu, L.Y.; Zhu, K.; Wang, R.Z.; Zhou, L.J.; Wang, W.L. Improvement of HAZ toughness of steel plate for high heat input welding by inclusion control with Mg deoxidation. Steel Res. Int. 2015, 86, 619–625. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L.J.; Sun, Y.H.; Zhao, A.M.; Zhang, W.; Li, J.M.; Dong, H.B.; Chou, K.C. The influence of Ce micro-alloying on the precipitation of intermetallic sigma phase during solidification of super-austenitic stainless steels. J. Alloys Compd. 2020, 815, 152418. [Google Scholar] [CrossRef]
- Thewlis, G. Effect of cerium sulphide particle dispersions on acicular ferrite microstructure development in steels. Mater. Sci. Technol. 2006, 22, 153–166. [Google Scholar] [CrossRef]
- Thewlis, G.; Chao, W.T.; Harrison, P.L.; Rose, A.J. Acicular ferrite development in autogenous laser welds using cerium sulphide particle dispersed steels. Mater. Sci. Technol. 2008, 24, 771–786. [Google Scholar] [CrossRef]
- Geng, R.M.; Li, J.; Shi, C.B. Effect of Ce on inclusion evolution and HAZ mechanical properties of Al-killed high-strength steel. Ironmak. Steelmak. 2021, 48, 796–802. [Google Scholar] [CrossRef]
- Chen, S.P.; Rana, R.; Haldar, A.; Ray, R.K. Current state of Fe-Mn-Al-C low density steels. Prog. Mater. Sci. 2017, 89, 345–391. [Google Scholar] [CrossRef]
- Pan, X.Q.; Yang, J.; Zhong, Q.D.; Qiu, Y.L.; Cheng, G.G.; Yao, M.Y.; Dong, J.X. Effects of coarse particles, prior austenite grains, and microstructures on impact toughness in heat-affected zone of Mg deoxidation steel plates without or with Al addition. Ironmak. Steelmak. 2021, 48, 962–972. [Google Scholar] [CrossRef]
- Cui, X.K.; Song, B.; Mao, J.H. Evolution of inclusions in Mg-RE-Ti treated steels with different Al contents and their influence on acicular ferrite. Metall. Res. Technol. 2021, 118, 208. [Google Scholar] [CrossRef]
- Xu, L.Y.; Yang, J.; Wang, R.Z. Influence of Al content on the inclusion-microstructure relationship in the heat-Affected zone of a steel plate with Mg deoxidation after high-heat-input Welding. Metals 2018, 8, 1027. [Google Scholar] [CrossRef]
- Li, T.T.; Yang, J.; Zhang, Y.H.; Zhang, Y.Q.; Chen, Y.L.; Xu, L.Y.; Li, R.B. Inclusions and microstructures in coarse-grained heat-affected zone of Al-Ti-Ca deoxidized shipbuilding steels with different Al contents after high-heat input welding. J. Mater. Res. Technol.-JMRT 2024, 30, 174–186. [Google Scholar] [CrossRef]
- Yu, L.; Wang, H.H.; Wang, X.L.; Huang, G.; Hou, T.P.; Wu, K.M. Improvement of impact toughness of simulated heat affected zone by addition of aluminium. Mater. Sci. Technol. 2014, 30, 1951–1958. [Google Scholar] [CrossRef]
- Li, X.B.; Zhang, T.S.; Min, Y.; Liu, C.J.; Jiang, M.F. Effect of magnesium addition in low carbon steel part 2: Toughness and microstructure of the simulated coarse-grained heat-affected zone. Ironmak. Steelmak. 2019, 46, 301–311. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, L.G.; Huo, J.X.; Zhang, Q.J.; Wu, Y.G.; Chen, W.; Wang, S.M. Relationship between crystallographic structure of complex inclusions MgAl2O4/Ti2O3/MnS and improved toughness of heat-affected zone in shipbuilding steel. J. Iron Steel Res. Int. 2022, 29, 1277–1290. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, L.G.; Zhang, Q.J.; Zhang, C.J.; Wang, S.M. Effect of Mg treatment on refining the microstructure and improving the toughness of the heat-affected zone in shipbuilding steel. Metals 2018, 8, 616. [Google Scholar] [CrossRef]
- Xu, L.Y.; Yang, J. Effects of Mg content on characteristics of nanoscale TiN particles and toughness of heat-affected zones of steel plates after high-heat-Input welding. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2020, 51, 4540–4548. [Google Scholar] [CrossRef]
- Xu, L.Y.; Yang, J.; Park, J.; Ono, H. Mechanism of improving heat-affected zone toughness of steel plate with Mg deoxidation after high-heat-input welding. Metals 2020, 10, 162. [Google Scholar] [CrossRef]
- Viesca, J.L.; González-Cachón, S.; García, A.; González, R.; Battez, A.H. Tribological behaviour of microalloyed and conventional C-Mn rail steels in a pure sliding condition. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2018, 232, 2201–2214. [Google Scholar] [CrossRef]
- Villalobos, J.C.; Del-Pozo, A.; Campillo, B.; Mayen, J.; Serna, S. Microalloyed steels through history until 2018: Review of chemical composition, processing and hydrogen service. Metals 2018, 8, 351. [Google Scholar] [CrossRef]
- Moon, J.; Kim, S.; Jeong, H.; Lee, J.; Lee, C. Influence of Nb addition on the particle coarsening and microstructure evolution in a Ti-containing steel weld HAZ. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2007, 454, 648–653. [Google Scholar] [CrossRef]
- Moon, J.; Lee, C. Behavior of (Ti,Nb)(C,N) complex particle during thermomechanical cycling in the weld CGHAZ of a microalloyed steel. Acta Mater. 2009, 57, 2311–2320. [Google Scholar] [CrossRef]
- Dingreville, R.; Qu, J.M. Interfacial excess energy, excess stress and excess strain in elastic solids: Planar interfaces. J. Mech. Phys. Solids 2008, 56, 1944–1954. [Google Scholar] [CrossRef]
- Yang, Y.L.; Jia, X.; Ma, Y.X.; Wang, P.; Zhu, F.X. Effect of Nb on inclusions and phase transformation in simulated high heat input coarse-grain HAZ of Nb/Ti low carbon microalloyed steel. Mater. Charact. 2022, 189, 111966. [Google Scholar] [CrossRef]
- Pan, X.Q.; Yang, J.; Zhang, Y.H. Microstructure evolution in heat-affected zone of shipbuilding steel plates with Mg deoxidation containing different Nb contents. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2022, 53, 1512–1528. [Google Scholar] [CrossRef]
- Yang, Y.L.; Jia, X.; Ma, Y.X.; Wang, P.; Zhu, F.X.; Yang, H.F.; Wang, C.; Wang, S.G. Effect of Nb on microstructure and mechanical properties between base metal and high heat input coarse-grain HAZ in a Ti-deoxidized low carbon high strength steel. J. Mater. Res. Technol 2022, 18, 2399–2412. [Google Scholar] [CrossRef]
- Li, T.T.; Yang, J.; Zhang, Y.H.; Chen, Y.L.; Zhang, Y.Q. Particles, microstructures, and impact toughness of CGHAZ of Ca deoxidation shipbuilding steel plates with different Nb contents. Steel Res. Int. 2023, 94, 2300020. [Google Scholar] [CrossRef]
- Da Rosa, G.; Maugis, P.; Portavoce, A.; Lartigue-Korinek, S.; Valle, N.; Lentzen, E.; Drillet, J.; Hoummada, K. Boron segregation at austenite grain boundaries: An equilibrium phenomenon. Acta Mater. 2023, 255, 119098. [Google Scholar] [CrossRef]
- Simcoe, C.R.; Elsea, A.R.; Manning, G.K. Furtherwork on the Bonron-Hardenability mechanism. Trans. Am. Inst. Min. Metall. Pet. Eng. Inc. 1956, 206, 984–988. [Google Scholar]
- Lin, H.R.; Cheng, G.H. Hardenability effect of Boron on carbon-steels. Mater. Sci. Technol. 1987, 3, 855–859. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Kou, D.X.; Chen, Z.Z.; Li, Y.Q.; Ma, Y.L.; Li, Y.M. Continuous cooling transformation behavior in welding coarse-grained heat-affected zone of G115 steel with the different content of boron. Metall. Mater. Trans. B Proc. Metall. Mater. Proc. Sci. 2023, 54, 1831–1844. [Google Scholar] [CrossRef]
- Liu, D.K.; Yang, J.; Zhang, Y.H. Effect of Boron content on microstructure and impact toughness in CGHAZ of shipbuilding steel plates with Ca deoxidation. Steel Res. Int. 2023, 94, 2200278. [Google Scholar] [CrossRef]
- Sakuraya, K.; Okada, H.; Abe, F. Influence of heat treatment on formation behavior of boron nitride inclusions in P122 heat resistant steel. Tetsu Hagane J. Iron Steel Inst. Jpn. 2007, 93, 392–399. [Google Scholar] [CrossRef]
- Shi, Z.R.; Wang, J.J.; Chai, X.Y.; Wang, S.H.; Chen, G.; Wang, R.Z. Effect of boron on intragranular ferrite nucleation mechanism in coarse grain heat-affected zone of high-nitrogen steel. Mater. Lett. 2020, 258, 126819. [Google Scholar] [CrossRef]
- Yamamoto, K.; Hasegawa, T.; Takamura, J. Effect of boron on intra-granular ferrite formation in Ti-oxide bearing steels. ISIJ Int. 1996, 36, 80–86. [Google Scholar] [CrossRef]
- Melloy, G.F.; Slimmon, P.R.; Podgursky, P.P. Optimizing Bonron effect. Metall. Trans. 1973, 4, 2279–2289. [Google Scholar] [CrossRef]
- Cotton, J.A.; Knutsen, R.D.; Lang, C.I. The influence of niobium and vanadium on the microstructure and mechanical properties of a high nitrogen stainless steel. Mater. Sci. Forum 1999, 318, 271–279. [Google Scholar]
- Zhang, M.; Fu, R.Y.; Cooman, B.C.; De Li, L. Investigation on precipitation transition in CGHAZ for TRIP steels containing vanadium and titanium. J. Iron Steel Res. Int. 2011, 18, 154–158. [Google Scholar]
- Bian, S.Y.; Zhao, H.M.; Wang, J.J.; Li, W.J.; Wang, C.; Pang, Q.H.; Zhang, Y.J.; Guo, J. Effect of alloy element on microstructure and properties of heat-affected zone. Mater. Sci. Technol. 2022, 38, 1244–1256. [Google Scholar] [CrossRef]
- Hu, J.; Du, L.X.; Wang, J.J.; Xie, H.; Gao, C.R.; Misra, R.D.K. High toughness in the intercritically reheated coarse-grained (ICRCG) heat-affected zone (HAZ) of low carbon microalloyed steel. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2014, 590, 323–328. [Google Scholar] [CrossRef]
- Miyamoto, G.; Shinyoshi, T.; Yamaguchi, J.; Furuhara, T.; Maki, T.; Uemori, R. Crystallography of intragranular ferrite formed on (MnS + V(C, N)) complex precipitate in austenite. Scr. Mater. 2003, 48, 371–377. [Google Scholar] [CrossRef]
- Shim, J.H.; Oh, Y.J.; Suh, J.Y.; Cho, Y.W.; Shim, J.D.; Byun, J.S.; Lee, D.N. Ferrite nucleation potency of non-metallic inclusions in medium carbon steels. Acta Mater. 2001, 49, 2115–2122. [Google Scholar] [CrossRef]
- Zou, Z.Y.; Li, Y.X. Effect of inclusions on toughness and microstructures in simulated coarse-grain heat-affected zones of Al/Ti deoxidised and Nb/V microalloyed steels. Ironmak. Steelmak. 2019, 46, 574–583. [Google Scholar]
- Svyazhin, A.; Kaputkina, L.; Smarygina, I.; Kaputkin, D. Nitrogen steels and high-nitrogen steels: Industrial technologies and properties. Steel Res. Int. 2022, 93, 2200160. [Google Scholar] [CrossRef]
- Li, X.L.; Fan, H.B.; Wang, Q.M.; Wang, Q.F. Effect of N content on the microstructure and impact properties of normalized Vanadium micro-alloyed P460NL1 steel. Metals 2023, 13, 1896. [Google Scholar] [CrossRef]
- Shi, Z.R.; Yang, C.F.; Wang, R.Z.; Su, H.; Chai, F.; Chu, J.F.; Wang, Q.F. Effect of nitrogen on the microstructures and mechanical properties in simulated CGHAZ of vanadium microalloyed steel varied with different heat inputs. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2016, 649, 270–281. [Google Scholar] [CrossRef]
- Shi, Z.R.; Wang, R.Z.; Su, H.; Chai, F.; Wang, Q.F.; Yang, C.F. Effect of nitrogen content on the second phase particles in V-Ti microalloyed shipbuilding steel during weld thermal cycling. Mater. Des. 2016, 96, 241–250. [Google Scholar] [CrossRef]
- Fan, H.B.; Shi, G.H.; Peng, T.; Wang, Q.M.; Wang, L.P.; Wang, Q.F.; Zhang, F.C. N-induced microstructure refinement and toughness improvement in the coarse grain heat-affected zone of a low carbon Mo-V-Ti-B steel subjected to a high heat input welding thermal cycle. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2021, 824, 141799. [Google Scholar] [CrossRef]
- Shi, Z.R.; Chai, X.Y.; Chai, F.; Su, H.; Pan, T.; Wang, Q.F.; Wang, R.Z.; Yang, C.F. The mechanism of intragranular ferrite formed on Ti-rich (Ti,V)(C,N) precipitates in the coarse heat affected zone of a V-N-Ti microalloyed steel. Mater. Lett. 2016, 175, 266–270. [Google Scholar] [CrossRef]
- Mohseni, P.; Solberg, J.K.; Karlsen, M.; Akselsen, O.M.; Ostby, E. Cleavage fracture initiation at M-A constituents in intercritically coarse-grained heat-affected zone of a HSLA steel. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2014, 45A, 384–394. [Google Scholar] [CrossRef]
- Mohseni, P.; Solberg, J.K.; Karlsen, M.; Akselsen, O.M.; Ostby, E. Investigation of mechanism of cleavage fracture initiation in intercritically coarse grained heat affected zone of HSLA steel. Mater. Sci. Technol. 2012, 28, 1261–1268. [Google Scholar] [CrossRef]
- Hu, B.; Wang, Q.M.; Li, F.M.; Wang, Q.F.; Liu, R.P. Refinement mechanism of large heat-input welding CGHAZ microstructure by N addition and its effect on toughness of a V-Ti-N microalloying weathering steel. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2024, 892, 146019. [Google Scholar] [CrossRef]
- Shi, G.H.; Zhao, H.L.; Zhang, S.M.; Wang, Q.F.; Zhang, F.C. Microstructural characteristics and impact fracture behaviors of low-carbon vanadium-microalloyed steel with different nitrogen contents. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2020, 769, 138501. [Google Scholar] [CrossRef]
- Zhang, L.P.; Davis, C.L.; Strangwood, M. Effect of TiN particles and microstructure on fracture toughness in simulated heat-affected zones of a structural steel. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 1999, 30, 2089–2096. [Google Scholar] [CrossRef]
- Zhang, T.S.; Liu, C.J.; Qiu, J.Y.; Li, X.B.; Jiang, M.F. Effect of Ti content on the characteristics of inclusions in Al-Ti-Ca complex deoxidized steel. ISIJ Int. 2017, 57, 314–321. [Google Scholar] [CrossRef]
- Li, J.Y.; Cheng, G.G.; Ruan, Q.; Li, J.C.; Pan, J.X.; Chen, X.R. Evolution mechanism of inclusions in Al-ki lled, Ti-bearing 11Cr stainless steel with Ca treatment. ISIJ Int. 2018, 58, 1042–1051. [Google Scholar] [CrossRef]
- Wan, X.; Zhou, B.; Nune, K.C.; Li, Y.; Wu, K.; Li, G. In-situ microscopy study of grain refinement in the simulated heat-affected zone of high-strength low-alloy steel by TiN particle. Sci. Technol. Weld. Join. 2017, 22, 343–352. [Google Scholar] [CrossRef]
- Zhang, L.; Kannengiesser, T. Austenite grain growth and microstructure control in simulated heat affected zones of microalloyed HSLA steel. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2014, 613, 326–335. [Google Scholar] [CrossRef]
- Yang, J.R.; Bhadeshia, H. Orientation relationships between adjacent plates of acicular ferrite in steel weld deposits. Mater. Sci. Technol. 1989, 5, 93–97. [Google Scholar] [CrossRef]
- Shi, M.-H.; Du, K.; Gao, P.; Zhang, J. Microstructure evolution and toughness variation of simulation HAZ with large heat input welding for E40 ship plate steel. IOP Conf. Ser. Mater. Sci. Eng. 2018, 382, 032010. [Google Scholar] [CrossRef]
- Tomita, Y.; Saito, N.; Tsuzuki, T.; Tokunaga, Y.; Okamoto, K. Improvement in haz toughness of steel by tin-MnS addition. ISIJ Int. 1994, 34, 829–835. [Google Scholar] [CrossRef]
- Wan, X.L.; Wu, K.M.; Huang, G.; Wei, R.; Cheng, L. In situ observation of austenite grain growth behavior in the simulated coarse-grained heat-affected zone of Ti-microalloyed steels. Int. J. Miner. Metall. Mater. 2014, 21, 878–885. [Google Scholar] [CrossRef]
- Yan, W.; Shan, Y.Y.; Yang, K. Effect of TiN inclusions on the impact toughness of low-carbon microalloyed steels. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2006, 37A, 2147–2158. [Google Scholar] [CrossRef]
- Zhu, Z.X.; Marimuthu, M.; Kuzmikova, L.; Li, H.J.; Barbaro, F.; Zheng, L.; Bai, M.Z.; Jones, C. Influence of Ti/N ratio on simulated CGHAZ microstructure and toughness in X70 steels. Sci. Technol. Weld. Join. 2013, 18, 45–51. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Zhang, Y.H.; Yang, J.; Li, T.T.; Chen, Y.L. Influence of Ti/N ratio on inclusions, microstructures, and toughness in heat-affected zone of shipbuilding steel plates with Mg deoxidation after high heat input welding. Steel Res. Int. 2024, 95, 2300283. [Google Scholar] [CrossRef]
- Song, M.M.; Hu, C.L.; Song, B.; Zhu, H.Y.; Xue, Z.L.; Xu, R.S. Effect of Ti-Mg treatment on the impact toughness of heat affected zone in 0.15%C-1.31%Mn steel. Steel Res. Int. 2018, 89, 1700355. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Kang, J.; Yuan, G.; Wang, G.D. Microstructure and mechanical properties of hot-rolled low-carbon steel containing Ti-Ca oxide particles: A comparison between base metal and HAZ. J. Iron Steel Res. Int. 2020, 27, 440–450. [Google Scholar] [CrossRef]
- Fang, F.; Yong, Q.L.; Yang, C.F.; Hang, S. Microstructure and precipitation behavior in heat affected zone of nitrogen-enhanced microalloyed steel containing V and Ti. J. Iron Steel Res. Int. 2007, 14, 249–253. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Shi, Z.; Luo, X.; Chai, F.; Pan, T.; Feng, G.; Yang, C. Micro-Alloying Effects on Microstructure and Weldability of High-Strength Low-Alloy Steel: A Review. Materials 2025, 18, 1036. https://doi.org/10.3390/ma18051036
Chen J, Shi Z, Luo X, Chai F, Pan T, Feng G, Yang C. Micro-Alloying Effects on Microstructure and Weldability of High-Strength Low-Alloy Steel: A Review. Materials. 2025; 18(5):1036. https://doi.org/10.3390/ma18051036
Chicago/Turabian StyleChen, Jian, Zhongran Shi, Xiaobing Luo, Feng Chai, Tao Pan, Guanghong Feng, and Caifu Yang. 2025. "Micro-Alloying Effects on Microstructure and Weldability of High-Strength Low-Alloy Steel: A Review" Materials 18, no. 5: 1036. https://doi.org/10.3390/ma18051036
APA StyleChen, J., Shi, Z., Luo, X., Chai, F., Pan, T., Feng, G., & Yang, C. (2025). Micro-Alloying Effects on Microstructure and Weldability of High-Strength Low-Alloy Steel: A Review. Materials, 18(5), 1036. https://doi.org/10.3390/ma18051036