Comparative Study on Extrusion 3D Printing of Solid Propellant Based on Plunger and Screw
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Testing and Evaluation
3. Results
3.1. Rheological Property Testing
3.2. Physical Model and Mesh Generation
3.3. Boundary Condition Setting
4. Results and Discussion
4.1. Comparative Analysis of Velocity Distribution
4.2. Comparative Analysis of Pressure Distribution
4.3. Comparative Analysis of Viscosity and Shear Rate Distribution
4.4. Comparative Analysis of Particle Transport in Slurry During Extrusion
4.5. Verification of Extrusion-Forming Performance for Propellant Substitute Material
4.5.1. Printing Parameter Setting and Sample Formation
4.5.2. Evaluation of Mechanical Properties
4.5.3. Microscopic Morphology
4.5.4. Porosity Characterization
5. Conclusions
- (1)
- Compared to screw extrusion, the plunger extrusion process exhibited simpler flow characteristics, with high velocity, high shear rate, and low-pressure distribution near the nozzle outlet, effectively facilitating smooth extrusion of the propellant paste. These characteristics were advantageous for extruding high-solid-content, high-viscosity solid propellants.
- (2)
- The plunger extrusion process demonstrated a higher outlet velocity uniformity index (0.9276 > 0.8293) and more stable particle transport performance than the screw extrusion process, making it more suitable for high-precision propellant printing. In contrast, screw extrusion was more prone to propellant backflow, presenting potential safety risks.
- (3)
- Propellant substitutes produced by both extrusion processes exhibited comparable mechanical properties and microscopic porosity, indicating similar performance in propellant grain formation across the two methods.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Cao, P.; Wang, X. Review of the Mechanical Properties and Numerical Simulation of Composite Solid Propellants. Materials 2023, 16, 6875. [Google Scholar] [CrossRef] [PubMed]
- Mahjub, A.; Mazlan, N.M.; Abdullah, M.Z.; Azam, Q. Design Optimization of Solid Rocket Propulsion: A Survey of Recent Advancements. J. Spacecr. Rockets 2020, 57, 3–11. [Google Scholar] [CrossRef]
- Luo, Y.; An, M. Research progress of energetic thermoplastic elastomer propellants. J. Solid Rocket Technol. 2024, 47, 143–154. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, R.; Zeng, X.; Li, H. An ascent guidance algorithm for the energy management of solid rockets. ISA Trans. 2020, 98, 309–319. [Google Scholar] [CrossRef]
- Tian, W.; Lei, X.; Tang, M.; Yang, Y.; Wang, W. Prospect of the intelligentized solid propulsion technology. J. Solid Rocket Technol. 2021, 44, 146–150. [Google Scholar]
- Xiao, L.; Hao, G.; Guo, R.; Ke, X.; Zhang, G.; Hu, Y.; Zhou, H.; Wang, S.; Jiang, W. Research Status and Prospect of Additive Manufacturing Technology for Energetic Materials. Chin. J. Explos. Propellants 2022, 45, 133–153. [Google Scholar] [CrossRef]
- Wang, M.; Jin, G.; Fu, Y.; Liang, J.; He, W.; Nan, F.; Chen, F. Combustion customization strategy of mixed propellant charges for multi-material additive manufacturing: Simulation and experiment. Arab. J. Chem. 2023, 16, 105269. [Google Scholar] [CrossRef]
- Iftekar, S.F.; Aabid, A.; Amir, A.; Baig, M. Advancements and Limitations in 3D Printing Materials and Technologies: A Critical Review. Polymers 2023, 15, 2519. [Google Scholar] [CrossRef]
- Zhou, L.; Miller, J.; Vezza, J.; Mayster, M.; Raffay, M.; Justice, Q.; Tamimi, Z.A.; Hansotte, G.; Sunkara, L.D.; Bernat, J. Additive Manufacturing: A Comprehensive Review. Sensors 2024, 24, 2668. [Google Scholar] [CrossRef]
- Abdulhameed, O.; Al-Ahmari, A.; Ameen, W.; Mian, S.H. Additive manufacturing: Challenges, trends, and applications. Adv. Mech. Eng. 2019, 11, 1687814018822880. [Google Scholar] [CrossRef]
- Park, S.; Shou, W.; Makatura, L.; Matusik, W.; Fu, K.K. 3D printing of polymer composites: Materials, processes, and applications. Matter 2022, 5, 43–76. [Google Scholar] [CrossRef]
- Blakey-Milner, B.; Gradl, P.; Snedden, G.; Brooks, M.; Pitot, J.; Lopez, E.; Leary, M.; Berto, F.; Plessis, A. Metal additive manufacturing in aerospace: A review. Mater. Des. 2021, 209, 110008. [Google Scholar] [CrossRef]
- Gradl, P.; Mireles, O.R.; Katsarelis, C.; Smith, T.M.; Sowards, J.; Park, A.; Chen, P.; Tinker, D.C.; Protz, C.; Teasley, T.; et al. Advancement of extreme environment additively manufactured alloys for next generation space propulsion applications. Acta Astronaut. 2023, 211, 483–497. [Google Scholar] [CrossRef]
- Chandru, R.A.; Balasubramanian, N.; Oommen, C.; Raghunandan, B.N. Additive Manufacturing of Solid Rocket Propellant Grains. J. Propuls. Power 2018, 34, 1090–1093. [Google Scholar] [CrossRef]
- Ali, T.K.; Balasubramanian, E.; Praveen, A.S.; Lade, R.; Kumar, A. Preliminary investigations on extrusion of high viscosity slurry using direct writing technique. Int. J. Simul. Multidiscip. Des. Optim. 2020, 11, 15. [Google Scholar] [CrossRef]
- McClain, M.S.; Afriat, A.; Rhoads, J.F.; Gunduz, I.E.; Son, S.F. Development and Characterization of a Photopolymeric Binder for Additively Manufactured Composite Solid Propellant Using Vibration Assisted Printing. Propellants Explos. Pyrotech. 2020, 45, 853–863. [Google Scholar] [CrossRef]
- Gunduz, I.E.; McClain, M.S.; Cattani, P.; Chiu, G.T.-C.; Rhoads, J.F.; Son, S.F. 3D printing of extremely viscous materials using ultrasonic vibrations. Addit. Manuf. 2018, 22, 98–103. [Google Scholar] [CrossRef]
- McClain, M.S.; Gunduz, I.E.; Son, S.F. Additive manufacturing of ammonium perchlorate composite propellant with high solids loadings. Proc. Combust. Inst. 2019, 37, 3135–3142. [Google Scholar] [CrossRef]
- Saadi, M.A.S.R.; Maguire, A.; Pottackal, N.T.; Thakur, M.S.H.; Ikram, M.M.; Hart, A.J.; Ajayan, P.M.; Rahman, M.M. Direct Ink Writing: A 3D Printing Technology for Diverse Materials. Adv. Mater. 2022, 34, 2108855. [Google Scholar] [CrossRef]
- Wan, X.; Luo, L.; Liu, Y.; Leng, J. Direct Ink Writing Based 4D Printing of Materials and Their Application. Adv. Sci. 2020, 16, 2001000. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, Y.; Miao, N.; Zhang, L.; Miao, K.; Hu, R. Direct Ink writing 3D printing technology and characteristics of composite solid propellant. J. Solid Rocket. Technol. 2021, 44, 650–655. [Google Scholar] [CrossRef]
- Wang, J.; Qi, Y.; Qi, W.; Xiao, H.; Wang, B.; Li, W.; Duan, Y.; Shi, J. 3D printing technology for high solid content thermoset solid propellant. J. Solid Rocket. Technol. 2024, 47, 397–404. [Google Scholar] [CrossRef]
- Ang, X.; Tey, J.Y.; Yeo, W.H.; Shak, K.P. A review on metallic and ceramic material extrusion method: Materials, rheology, and printing parameters. J. Manuf. Processes 2023, 90, 28–42. [Google Scholar] [CrossRef]
- Tang, M.; Zhong, Z.; Ke, C. Advanced supramolecular design for direct ink writing of soft materials. Chem. Soc. Rev. 2023, 52, 1614–1649. [Google Scholar] [CrossRef]
- Hao, L.; Tang, D.; Sun, T.; Xiong, W.; Feng, Z.; Evans, K.E.; Li, Y. Direct Ink Writing of Mineral Materials: A review. Int. J. Precis. Eng. Manuf.-Green Technol. 2020, 8, 665–685. [Google Scholar] [CrossRef]
- Garino, S.; Antonaci, P.; Pastrone, D.; Sangermano, M.; Maggi, F. Photo-polymerization for additive manufacturing of composite solid propellants. Acta Astronaut. 2021, 182, 58–65. [Google Scholar] [CrossRef]
- Shen, X.; Mou, W.; Dai, Y. Development of Inert HTPB Solid Propellant. J. Propuls. Technol. 1996, 17, 77–81. [Google Scholar]
- Luis, J. Rheological Studies and 3D Extrusion-Based Printing of Nanocomposite Hydrogels; Universidade Estadual de Campinas: Campinas, Brazil, 2018. [Google Scholar]
- Fedotov, A.F. Hybrid Model of Viscosity of Polymer Blends. Polym. Eng. Sci. 2018, 59, E212–E218. [Google Scholar] [CrossRef]
- Montiel, R.; Patino-Herrera, R.; Gonzalez-Calderon, J.A.; Perez, E. Novel Twin Screw Co-Extrusion-Electrospinning Apparatus. Am. J. Biomed. Eng. 2016, 6, 19–24. [Google Scholar] [CrossRef]
- Ansari, A.A.; Kamil, M. Effect of print speed and extrusion temperature on properties of 3D printed PLA using fused deposition modeling process. Mater. Today Proc. 2021, 45, 5462–5468. [Google Scholar] [CrossRef]
- Ranjan, R.; Murthy, H. A review on material characterization of composite solid propellant. J. Energetic Mater. 2023, 1, 1–35. [Google Scholar] [CrossRef]
Selection | Component | Function |
---|---|---|
SiO2 | Substitute material for oxidant | Substitute for ammonium perchlorate (AP) |
Al | Metal fuel | Release heat, increase energy level |
Photosensitive resin | Binder | Bind solid filler particles and undergo photocuring reactions to form a three-dimensional network |
Solid Phase Content/wt% | SiO2/wt% | Al/wt% | Photosensitive Resin/wt% | |
---|---|---|---|---|
D50 = 235 μm | D50 = 5 μm | D50 = 33 μm | Polyurethane Acrylate (Self-Made) | |
84 | 60.25 | 13.75 | 10 | 16 |
Parameter Definition | Configuration | ||
---|---|---|---|
Material parameters of propellant slurry | g | 9.8 m/s2 | |
Density | kg/m3 | ||
Viscosity | Bird–Carreau | ||
Screw settings | Boundary conditions | Inlet | fn = fs = 0 |
Outlet | fn = fs = 0 | ||
Wall | vn = vs = 0 | ||
Setting of moving parts | Screw Speed | n | |
Plunger settings | Boundary conditions | Inlet | fn = fs = 0 |
Outlet | fn = fs = 0 |
Structure | Formula for Calculation | Parameters | Parameters of Moving Parts |
---|---|---|---|
Plunger | Qv, volume flow rate of slurry, mm3/s | vp = 0.26 mm/s | |
rout, outlet cross- sectional radius, mm | |||
vout, slurry outlet velocity, mm/s | |||
rin, inlet cross- sectional radius, mm | |||
vp, plunger movement speed, mm/s | |||
Screw | Qf, approximate volume flow rate, mm3/s | n = 1 r/s | |
W, screw width, w = 3 mm | |||
H, thread depth, h = 2 mm | |||
D, screw diameter, D = 10 mm | |||
n, screw rotation speed, r/s | |||
θ, thread angle, θ = 18.8° | |||
F, fill ratio, 0.28 |
Parameter Name | Setting |
---|---|
Layer height/mm | 1.6 |
Line width/mm | 1.6 |
Infill density/% | 100 |
Infill line distance/mm | 1.65 |
Print speed/mms−1 | 20 |
Infill pattern | Concentric circles |
Process | Tensile Strength/MPa | Elongation at Break/% |
---|---|---|
Plunger extrusion molding | 4.033 | 0.493 |
Screw extrusion molding | 4.427 | 0.233 |
Process | Material Volume/mm | Defect Volume/mm−3 | Porosity/% |
---|---|---|---|
Plunger extrusion molding | 9374.8 | 50.3 | 0.53 |
Screw extrusion molding | 8352.0 | 85.3 | 1.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, S.; Shi, J.; Ren, Q.; Miao, K.; Tang, M.; Shi, H. Comparative Study on Extrusion 3D Printing of Solid Propellant Based on Plunger and Screw. Materials 2025, 18, 777. https://doi.org/10.3390/ma18040777
Song S, Shi J, Ren Q, Miao K, Tang M, Shi H. Comparative Study on Extrusion 3D Printing of Solid Propellant Based on Plunger and Screw. Materials. 2025; 18(4):777. https://doi.org/10.3390/ma18040777
Chicago/Turabian StyleSong, Shixiong, Jiawei Shi, Quanbin Ren, Kai Miao, Min Tang, and Hongbin Shi. 2025. "Comparative Study on Extrusion 3D Printing of Solid Propellant Based on Plunger and Screw" Materials 18, no. 4: 777. https://doi.org/10.3390/ma18040777
APA StyleSong, S., Shi, J., Ren, Q., Miao, K., Tang, M., & Shi, H. (2025). Comparative Study on Extrusion 3D Printing of Solid Propellant Based on Plunger and Screw. Materials, 18(4), 777. https://doi.org/10.3390/ma18040777