Deformation and Fracture Behaviour of Heterostructure Mn8/SS400 Bimetal Composite
Abstract
:1. Introduction
2. Experimental Materials and Methods
2.1. Materials and Sample Preparation
2.2. Microstructure Characterisation
2.3. Mechanical Testing
3. Results and Discussion
3.1. Microstructure Analysis of Mn8/SS400 BC
3.2. Tensile Behaviour of Mn8/SS400 BCs
3.3. Factors Influencing ROM Prediction Deviation
3.4. Plastic Instability Behaviour of the Mn8/SS400 BCs
3.5. The Effect of Strain Hardening Capacity and the Thickness Ratio on Accumulated Damage and Fracture Mechanisms
3.6. Bending Characteristics of the Mn8/SS400 BCs
4. Conclusions
- (1)
- The UTS and elongation of the Mn8/SS400 BCs exhibit a non-linear relationship with varying thickness ratios. Intermediate ratios (e.g., 2:1) maximise strength and ductility due to optimised load transfer and balanced deformation compatibility between the layers. Extreme ratios (1:5 and 5:1) result in reduced mechanical performance due to mismatched strain hardening and interfacial stress concentration.
- (2)
- The fracture behaviour transitions from intergranular and transgranular fractures in Mn8-rich BCs to ductile dimples and void coalescence in SS400-dominant composites. At intermediate ratios, the synergistic interaction between brittle Mn8 and ductile SS400 layers delays crack propagation and enhances stress distribution, leading to superior fracture resistance.
- (3)
- Enhanced strain hardening near the interface, driven by dislocation pile-ups and diffusion strengthening, suppresses premature instability in BCs with balanced thickness ratios. However, excessive layer thickness disparities compromise strain compatibility, accelerating instability and reducing overall mechanical performance.
- (4)
- The diffusion layer at the interface of Mn8/SS400 BCs and the resulting high dislocation density enhance the interfacial bonding strength. This mechanism, combined with stress redistribution, enables effective strain transfer, contributing to the superior performance of the BCs.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wada, K.; Yamabe, J.; Ogawa, Y.; Takakuwa, O.; Iijima, T.; Matsunaga, H. Comparative study of hydrogen-induced intergranular fracture behavior in Ni and Cu–Ni alloy at ambient and cryogenic temperatures. Mater. Sci. Eng. A 2019, 766, 138349. [Google Scholar] [CrossRef]
- Hosseini, M.; Pardis, N.; Manesh, H.D.; Abbasi, M.; Kim, D.-I. Structural characteristics of Cu/Ti bimetal composite produced by accumulative roll-bonding (ARB). Mater. Des. 2017, 113, 128–136. [Google Scholar] [CrossRef]
- Wang, Q.; Song, Y.; Jiang, B.; Fu, J.; Tang, A.; Sheng, H.; Song, J.; Zhang, D.; Jiang, Z.; Huang, G.; et al. Fabrication of Mg/Mg composite with sleeve-core structure and its effect on room-temperature yield asymmetry via bimetal casting-co-extrusion. Mater. Sci. Eng. A 2020, 769, 138476. [Google Scholar] [CrossRef]
- Martyushev, N.V.; Petrenko, Y.N. Effects of crystallization conditions on lead tin bronze properties. Adv. Mater. Res. 2014, 880, 174–178. [Google Scholar] [CrossRef]
- Martyushev, N.V.; Semenkov, I.V.; Petrenko, Y.N. Structure and properties of leaded tin bronze under different crystallization conditions. Adv. Mater. Res. 2014, 872, 89–93. [Google Scholar] [CrossRef]
- Chen, J.; Yang, Y.; Song, C.; Zhang, M.; Wu, S.; Wang, D. Interfacial microstructure and mechanical properties of 316L /CuSn10 multi-material bimetallic structure fabricated by selective laser melting. Mater. Sci. Eng. A 2019, 752, 75–85. [Google Scholar] [CrossRef]
- Peng, B.; Jie, J.; Liu, J.; Qu, J.; Wang, M.; Sun, J.; Chen, X.; Ren, Z.; Li, T. Synergetic strengthening of heterogeneous interface far beyond rule of mixture in Cu/1010 steel bimetal laminar composite. Mater. Sci. Eng. A 2022, 851, 143609. [Google Scholar] [CrossRef]
- Peng, B.; Jie, J.; Sun, J.; Liu, Q.; Wang, X.; Hang, Z.; Ding, H.; Muraishi, S.; Li, T. Synergistic deformation and fracture behavior of heterostructure Cu/1010 steel bimetal laminated composites. Mater. Sci. Eng. A 2023, 888, 145835. [Google Scholar] [CrossRef]
- Peng, B.; Hang, Z.; Jie, J.; Lou, S.; Wang, H.; Muraishi, S.; Li, T. Evolution of interface and mechanical performance of Cu-xAl/1010 steel bimetal laminated composite. J. Alloys Compd. 2023, 935, 168121. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, T.; Ren, Z.; Liu, Y.; Huang, Q. Evolution mechanism of microstructure and bond strength based on interface diffusion and IMCs of Ti/steel clad plates fabricated by double-layered hot rolling. J. Mater. Process. Technol. 2022, 310, 117780. [Google Scholar] [CrossRef]
- Feng, Y.Y.; Yu, H.; Luo, Z.A.; Misra, R.D.; Xie, G.M. The Impact of Process Parameters on Microstructure and Mechanical Properties of Stainless Steel/Carbon Steel Clad Rebar. Materials 2019, 12, 2868. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, X.; Wang, W.; Yang, Y.; Zhang, W. Diffusion mechanism of immiscible Fe-Mg system induced by high-density defects at the steel/Mg composite interface. J. Mater. Sci. Technol. 2023, 144, 150–160. [Google Scholar] [CrossRef]
- Yan, Y.B.; Zhang, Z.W.; Shen, W.; Wang, J.H.; Zhang, L.K.; Chin, B.A. Microstructure and properties of magnesium AZ31B–aluminum 7075 explosively welded composite plate. Mater. Sci. Eng. A 2010, 527, 2241–2245. [Google Scholar] [CrossRef]
- Bina, M.H.; Dehghani, F.; Salimi, M. Effect of heat treatment on bonding interface in explosive welded copper/stainless steel. Mater. Des. 2013, 45, 504–509. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, J.; Jia, F.; Liang, X.; Zhang, Q.; Yuan, X.; Jiao, S.; Jiang, Z. Interfacial characteristics and mechanical properties of duplex stainless steel bimetal composite by heat treatment. Mater. Sci. Eng. A 2020, 787, 139513. [Google Scholar] [CrossRef]
- Zhao, J.; Zaiser, M.; Lu, X.; Zhang, B.; Huang, C.; Kang, G.; Zhang, X. Size-dependent plasticity of hetero-structured laminates: A constitutive model considering deformation heterogeneities. Int. J. Plast. 2021, 145, 103063. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, M.; Ma, X.; Wang, M.; Yin, K.; Huang, A.; Huang, C. Improved back stress and synergetic strain hardening in coarse-grain/nanostructure laminates. Mater. Sci. Eng. A 2018, 727, 113–118. [Google Scholar] [CrossRef]
- Lee, S.; Wadsworth, J.; Sherby, O.D. Tensile Properties of Laminated Composites Based on Ultrahigh Carbon Steel. J. Compos. Mater. 1991, 25, 842–853. [Google Scholar] [CrossRef]
- Feng, B.; Feng, X.; Yan, C.; Xin, Y.; Wang, H.; Wang, J.; Zheng, K. On the rule of mixtures for bimetal composites without bonding. J. Magnes. Alloys 2020, 8, 1253–1261. [Google Scholar] [CrossRef]
- Wu, X.; Yang, M.; Yuan, F.; Wu, G.; Wei, Y.; Huang, X.; Zhu, Y. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc. Natl. Acad. Sci. USA 2015, 112, 14501–14505. [Google Scholar] [CrossRef]
- Cao, H.; Chen, Z.; Cheng, M.; Zhao, S.; Wang, T.; Li, Y. You Recommend, I Buy: How and Why People Engage in Instant Messaging Based Social Commerce. Proc. ACM Hum.-Comput. Interact. 2021, 5, 1–25. [Google Scholar] [CrossRef]
- Miyajima, Y.; Yamada, T.; Fujii, T. Plastic instability criterion based on new necking parameters for Cu–Al, Cu–A5052, and Cu–A5083 roll-bonded laminated metal composites fabricated without post-annealing. J. Mater. Process. Technol. 2022, 306, 117634. [Google Scholar] [CrossRef]
- Llorca, J.; Martínez, J.L.; Elices, M. Reinforcement fracture and tensile ductility in sphere-reinforced metal-matrix composites. Fatigue Fract. Eng. Mater. Struct. 1997, 20, 689–702. [Google Scholar] [CrossRef]
- Kubin, L.P.; Estrin, Y. Strain nonuniformities and plastic instabilities. Rev. Phys. Appliquée 1988, 23, 573–583. [Google Scholar] [CrossRef]
- Peng, B.; Jie, J.; Wang, M.; Dong, B.; Wang, X.; Li, S.; Li, T. Microstructure characteristics and deformation behavior of tin bronze/1010 steel bimetal layered composite by continuous solid/liquid bonding. Mater. Sci. Eng. A 2022, 844, 143155. [Google Scholar] [CrossRef]
- Hansen, N.; Mehl, R.F.; Medalist, A. New discoveries in deformed metals. Metall. Mater. Trans. A 2001, 32, 2917–2935. [Google Scholar] [CrossRef]
- Gramlich, A.; Bleck, W. Tempering and Intercritical Annealing of Air-Hardening 4 wt% Medium Manganese Steels. Steel Res. Int. 2021, 92, 2100180. [Google Scholar] [CrossRef]
- Han, J.; Lee, Y.-K. The effects of the heating rate on the reverse transformation mechanism and the phase stability of reverted austenite in medium Mn steels. Acta Mater. 2014, 67, 354–361. [Google Scholar] [CrossRef]
- Hu, B.; Luo, H.; Yang, F.; Dong, H. Recent progress in medium-Mn steels made with new designing strategies, a review. J. Mater. Sci. Technol. 2017, 33, 1457–1464. [Google Scholar] [CrossRef]
- Mishra, G.; Chandan, A.K.; Kundu, S. Hot rolled and cold rolled medium manganese steel: Mechanical properties and microstructure. Mater. Sci. Eng. A 2017, 701, 319–327. [Google Scholar] [CrossRef]
- Kumnorkaew, T.; Lian, J.; Uthaisangsuk, V.; Zhang, J.; Bleck, W. Low carbon bainitic steel processed by ausforming: Heterogeneous microstructure and mechanical properties. Mater. Charact. 2022, 194, 112466. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, S.; Wang, K.; Yan, L.; Wang, J.; Xia, Q.; Yu, H. Effect of vanadium microalloying on phase transformation and strengthening mechanism of 1000 MPa low carbon bainitic steel. Mater. Sci. Eng. A 2023, 884, 145578. [Google Scholar] [CrossRef]
- Lan, H.F.; Du, L.X.; Li, Q.; Qiu, C.L.; Li, J.P.; Misra, R.D.K. Improvement of strength-toughness combination in austempered low carbon bainitic steel: The key role of refining prior austenite grain size. J. Alloys Compd. 2017, 710, 702–710. [Google Scholar] [CrossRef]
- Zhao, L.; Qian, L.; Zhou, Q.; Li, D.; Wang, T.; Jia, Z.; Zhang, F.; Meng, J. The combining effects of ausforming and below-Ms or above-Ms austempering on the transformation kinetics, microstructure and mechanical properties of low-carbon bainitic steel. Mater. Des. 2019, 183, 108123. [Google Scholar] [CrossRef]
- Kim, M.-C.; Oh, Y.J.; Hong, J.H. Characterization of boundaries and determination of effective grain size in Mn-Mo-Ni low alloy steel from the view of misorientation. Scr. Mater. 2000, 43, 205–211. [Google Scholar] [CrossRef]
- Liu, B.X.; An, Q.; Yin, F.X.; Wang, S.; Chen, C.X. Interface formation and bonding mechanisms of hot-rolled stainless steel clad plate. J. Mater. Sci. 2019, 54, 11357–11377. [Google Scholar] [CrossRef]
- Liu, B.X.; Wang, S.; Fang, W.; Ma, J.L.; Yin, F.X.; He, J.N.; Feng, J.H.; Chen, C.X. Microstructure and mechanical properties of hot rolled stainless steel clad plate by heat treatment. Mater. Chem. Phys. 2018, 216, 460–467. [Google Scholar] [CrossRef]
- Royer, A.; Jacques, A.; Bastie, P.; Véron, M. The evolution of the lattice parameter mismatch of nickel based superalloy: An in situ study during creep deformation. Mater. Sci. Eng. A 2001, 319–321, 800–804. [Google Scholar] [CrossRef]
- Bay, B.; Hansen, N.; Hughes, D.A.; Kuhlmann-Wilsdorf, D. Overview no. 96 evolution of f.c.c. deformation structures in polyslip. Acta Metall. Mater. 1992, 40, 205–219. [Google Scholar] [CrossRef]
- Yang, X.; Ma, X.; Moering, J.; Zhou, H.; Wang, W.; Gong, Y.; Tao, J.; Zhu, Y.; Zhu, X. Influence of gradient structure volume fraction on the mechanical properties of pure copper. Mater. Sci. Eng. A 2015, 645, 280–285. [Google Scholar] [CrossRef]
- Syn, C.K.; Lesuer, D.R.; Sherby, O.D. Enhancing tensile ductility of a particulate-reinforced aluminum metal matrix composite by lamination with Mg-9%Li alloy. Mater. Sci. Eng. A 1996, 206, 201–207. [Google Scholar] [CrossRef]
- Yang, M.; Pan, Y.; Yuan, F.; Zhu, Y.; Wu, X. Back stress strengthening and strain hardening in gradient structure. Mater. Res. Lett. 2016, 4, 145–151. [Google Scholar] [CrossRef]
- Feng, B.; Xin, Y.; Guo, F.; Yu, H.; Wu, Y.; Liu, Q. Compressive mechanical behavior of Al/Mg composite rods with different types of Al sleeve. Acta Mater. 2016, 120, 379–390. [Google Scholar] [CrossRef]
- Chen, Y.; Shao, S.; Liu, X.Y.; Yadav, S.K.; Li, N.; Mara, N.; Wang, J. Misfit dislocation patterns of Mg-Nb interfaces. Acta Mater. 2017, 126, 552–563. [Google Scholar] [CrossRef]
- An, M.R.; Song, H.Y.; Deng, Q.; Su, M.J.; Liu, Y.M. Influence of interface with mismatch dislocations on mechanical properties of Ti/Al nanolaminate. J. Appl. Phys. 2019, 125, 165307. [Google Scholar] [CrossRef]
- Chawla, K. On the applicability of the “Rule-of-Mixtures” to the strength properties of metal-matrix composites. Rev. Bras. De Física 1974, 4, 411–418. [Google Scholar]
- Dieter, G.E.; Bacon, D. Mechanical Metallurgy; McGraw-Hill: New York, NY, USA, 1976. [Google Scholar]
- Feng, B.; Xin, Y.; Sun, Z.; Yu, H.; Wang, J.; Liu, Q. On the rule of mixtures for bimetal composites. Mater. Sci. Eng. A 2017, 704, 173–180. [Google Scholar] [CrossRef]
- Paramsothy, M.; Gupta, M.; Srikanth, N. Processing, Microstructure, and Properties of a Mg/Al Bimetal Macrocomposite. J. Compos. Mater. 2008, 42, 2567–2584. [Google Scholar] [CrossRef]
- Ghosh, A.K. Tensile instability and necking in materials with strain hardening and strain-rate hardening. Acta Metall. 1977, 25, 1413–1424. [Google Scholar] [CrossRef]
- Hutchinson, J.W.; Neale, K.W. Influence of strain-rate sensitivity on necking under uniaxial tension. Acta Metall. 1977, 25, 839–846. [Google Scholar] [CrossRef]
- Xu, Y.; Ding, L.; Li, C.; Li, B.; Zhang, S.; Li, J.; Gao, F.; Sun, Z.; Jiang, P.; Lai, M. Combined influence of strain rate and hydrogen on the deformation behavior of a near-α titanium alloy. Mater. Sci. Eng. A 2023, 882, 145474. [Google Scholar] [CrossRef]
- Torre, F.D.; Van Swygenhoven, H.; Victoria, M. Nanocrystalline electrodeposited Ni: Microstructure and tensile properties. Acta Mater. 2002, 50, 3957–3970. [Google Scholar] [CrossRef]
- Janssen, M.; Zuidema, J.; Wanhill, R. Fracture Mechanics: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Schicchi, D.S.; Hoffmann, F.; Frerichs, F. A mesoscopic approach of the quench cracking phenomenon influenced by chemical inhomogeneities. Eng. Fail. Anal. 2017, 78, 67–86. [Google Scholar] [CrossRef]
- Li, X.-B.; Zu, G.-Y.; Wang, P. Asymmetry in interface and bending property of Al/Cu/Al bimetallic laminates. Rare Met. 2014, 33, 556–562. [Google Scholar] [CrossRef]
Material | C | Si | Mn | Cr | Mo | V | Ti | P | S |
---|---|---|---|---|---|---|---|---|---|
Mn8 | 0.98 | 0.19 | 8.10 | 1.39 | 0.26 | 0.18 | 0.05 | 0.012 | 0.002 |
SS400 | 0.085 | 0.28 | 1.43 | - | - | - | 0.012 | 0.013 | 0.001 |
Sample | Mn8 Fraction (%) |
---|---|
Mn8 | 100 |
Mn8/SS400-1 | 83 |
Mn8/SS400-2 | 67 |
Mn8/SS400-3 | 50 |
Mn8/SS400-4 | 33 |
Mn8/SS400-5 | 17 |
SS400 | 0 |
Yield Strength (MPa) | Ultimate Tensile Strength (MPa) | Ultimate Elongation (%) | |
---|---|---|---|
Mn8/SS400-Mn8 | 597.96 ± 4.16 | 792.68 ± 5.33 | 7.43 ± 1.33 |
Mn8/SS400-1 | 587.35 ± 5.27 | 779.20 ± 7.24 | 5.49 ± 0.63 |
Mn8/SS400-2 | 620.03 ± 3.64 | 938.19 ± 6.80 | 14.91 ± 3.27 |
Mn8/SS400-3 | 556.59 ± 6.11 | 838.71 ± 5.83 | 12.23 ± 2.67 |
Mn8/SS400-4 | 604.14 ± 5.48 | 881.50 ± 5.66 | 13.54 ± 1.94 |
Mn8/SS400-5 | 583.45 ± 7.03 | 795.69 ± 4.79 | 4.92 ± 0.51 |
Mn8/SS400-SS400 | 542.70 ± 6.21 | 774.19 ± 6.43 | 12.34 ± 2.54 |
n | k | m | |
---|---|---|---|
Mn8 | 0.11 ± 0.0020 | 1024.03 ± 1.72 | 4.32 × 10−3 |
SS400 | 0.10 ± 0.0013 | 989.93 ± 1.03 | 8.6 × 10−3 |
Exp. of PIS/% | Pre. of PIS by Equation (12) | Deviation from Exp./% | |
---|---|---|---|
Mn8 | 7.43 | 8.87 | 16.2 |
Mn8/SS400-1 | 5.49 | 6.73 | 18.4 |
Mn8/SS400-2 | 14.91 | 16.15 | 7.7 |
Mn8/SS400-3 | 12.23 | 14.41 | 15.1 |
Mn8/SS400-4 | 13.54 | 15.49 | 12.6 |
Mn8/SS400-5 | 4.92 | 6.64 | 25.9 |
SS400 | 12.34 | 18.93 | 34.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, S.; Zhou, C.; Xie, H.; Ren, M.; Lin, F.; Liang, X.; Zhao, X.; Li, H.; Jiao, S.; Jiang, Z. Deformation and Fracture Behaviour of Heterostructure Mn8/SS400 Bimetal Composite. Materials 2025, 18, 758. https://doi.org/10.3390/ma18040758
Yuan S, Zhou C, Xie H, Ren M, Lin F, Liang X, Zhao X, Li H, Jiao S, Jiang Z. Deformation and Fracture Behaviour of Heterostructure Mn8/SS400 Bimetal Composite. Materials. 2025; 18(4):758. https://doi.org/10.3390/ma18040758
Chicago/Turabian StyleYuan, Shengnan, Cunlong Zhou, Haibo Xie, Mengyuan Ren, Fei Lin, Xiaojun Liang, Xing Zhao, Hongbin Li, Sihai Jiao, and Zhengyi Jiang. 2025. "Deformation and Fracture Behaviour of Heterostructure Mn8/SS400 Bimetal Composite" Materials 18, no. 4: 758. https://doi.org/10.3390/ma18040758
APA StyleYuan, S., Zhou, C., Xie, H., Ren, M., Lin, F., Liang, X., Zhao, X., Li, H., Jiao, S., & Jiang, Z. (2025). Deformation and Fracture Behaviour of Heterostructure Mn8/SS400 Bimetal Composite. Materials, 18(4), 758. https://doi.org/10.3390/ma18040758