On the Non-Thermal Mechanisms in Microwave Sintering of Materials
Abstract
:1. Introduction
- (1)
- Lower energy consumption.
- (2)
- Higher heating rates or shorter heating time.
- (3)
- Intensified diffusion process.
- (4)
- Better grain distribution at higher density.
- (5)
- Improved mechanical and physical properties.
2. Observations of the Non-Thermal Effects in Microwave Sintering
2.1. Ceramic Material
2.2. Metal Powder
2.3. High Magnetic Permeability Ferrite
2.4. Composites
2.5. Crystallization
3. Early Theories on Causes for the Non-Thermal Effects in Microwave Sintering
3.1. Ponderomotive Force Accelerated Transmission of Ceramic Particles in Solid Ion Plasma
3.2. Magnetic Causes
3.3. Enhanced Reaction in Polarization Charge-Induced Electric Field
3.3.1. Formation of Polarization Charges
3.3.2. Theory of Electric Field Intensification by Polarization Charges
3.3.3. Effect of Enhanced Electric Field on Microwave Sintering
4. A Recent Theory on Electric Force Attraction Due to Polarization Charge Enhancement
4.1. Force Density on the Spherical Surface
4.2. Total Attractive Force
4.3. Significance of the Attractive Force to Microwave Sintering
4.4. A Relevant Experiment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahaman, M.N. Ceramic Processing and Sintering, 2nd ed.; Taylor & Francis Group: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Ćurković, L.; Veseli, R.; Gabelica, I.; Žmak, I.; Ropuš, I.; Vukšić, M. A Review of microwave-assisted sintering technique. Trans. FAMENA 2021, 45, 256786. [Google Scholar] [CrossRef]
- Oghbaei, M.; Mirzaee, O. Microwave versus conventional sintering: A review of fundamentals, advantages and applications. J. Alloys Compd. 2010, 494, 175–189. [Google Scholar] [CrossRef]
- Clark, D.E.; Sutton, W.H. Microwave processing of materials. Annu. Rev. Mater. Sci. 1996, 26, 299–331. [Google Scholar] [CrossRef]
- Fang, Z.Z. (Ed.) Sintering of Advanced Materials; Woodhead Publishing Limited: Sawston, UK, 2010. [Google Scholar]
- Rybakov, K.I.; Olevsky, E.A.; Krikun, E.V. Microwave sintering: Fundamentals and modeling. J. Am. Ceram. Soc. 2013, 96, 1003–1020. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Basak, T. Susceptor-assisted enhanced microwave processing of ceramics—A review. Crit. Rev. Solid State Mater. Sci. 2016, 42, 433–469. [Google Scholar] [CrossRef]
- Sun, J.; Wang, W.; Yue, Q. Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials 2016, 9, 231–255. [Google Scholar] [CrossRef]
- Alem, S.A.A.; Latifi, R.; Angizi, S.; Hassanaghaei, F.; Aghaahmadi, M.; Ghasali, E.; Rajabi, M. Microwave sintering of ceramic reinforced metal matrix composites and their properties: A review. Mater. Manuf. Process. 2020, 35, 303–327. [Google Scholar] [CrossRef]
- Batienkov, R.V.; Bol’shakova, A.N.; Khudnev, A.A. Microwave Sintering of Metal Powder Materials (Review). Metallurgist 2022, 65, 1163–1173. [Google Scholar] [CrossRef]
- Agrawal, D. Microwave sintering of ceramic, composites, and metal powders. In Sintering of Advanced Materials; Fang, Z.Z., Ed.; Woodhead Publishing Limited: Sawston, UK, 2010; pp. 222–248. [Google Scholar] [CrossRef]
- Shen, M.K.; Chu, K.R. Electromagnetic wave interactions with a conducting medium—A graphic illustration of dispersive properties. Am. J. Phys. 2014, 82, 110–112. [Google Scholar] [CrossRef]
- Fliflet, A.W.; Bruce, R.W.; Fischer, R.P.; Lewis, D.; Kurihara, L.K.; Bender, B.A.; Chow, G.-M.; Rayne, R.J. A study of millimeter-wave sintering of fine-grained alumina compacts. IEEE Trans. Plasma Sci. 2000, 28, 924–935. [Google Scholar] [CrossRef]
- Sudiana, I.N.; Ito, R.; Inagaki, S.; Kuwayama, K.; Sako, K.; Mitsudo, S. Densification of alumina ceramics sintered by using sub-millimeter wave gyrotron. J. Infrared Millim. Terahertz Waves 2013, 34, 627–638. [Google Scholar] [CrossRef]
- Kriegsmann, G.A. Thermal runaway in microwave heated ceramics A one-dimensional model. J. Appl. Phys. 1992, 71, 1960. [Google Scholar] [CrossRef]
- Menezes, R.R.; Souto, P.M.; Kiminami, R.H.G.A. Microwave fast sintering of ceramic materials. In Sintering of Ceramics—New Emerging Techniques; Lakshmanan, A., Ed.; Intech Open: London, UK, 2012. [Google Scholar] [CrossRef]
- Vriezinga, C.A.; Sanchez-Pedreno, S.; Grasman, J. Thermal runaway in microwave heating: A mathematical analysis. Appl. Math. Model. 2002, 26, 1029–1038. [Google Scholar] [CrossRef]
- Spotz, M.S.; Skamser, D.J.; Johnson, D.L. Thermal stability of ceramic materials in microwave heating. J. Am. Ceram. Soc 1995, 78, 1041–1048. [Google Scholar] [CrossRef]
- Garnault, T.; Bouvard, D.; Chaix, J.M.; Marinel, S.; Harnois, C. Is direct microwave heating well suited for sintering ceramics? Ceram. Int. 2021, 47, 16716–16729. [Google Scholar] [CrossRef]
- Cheng, X.; Zhao, C.; Wang, H.; Wang, Y.; Wang, Z. Mechanism of irregular crack-propagation in thermal controlled fracture of ceramics induced by microwave. Mech. Ind. 2020, 21, 610. [Google Scholar] [CrossRef]
- Brosnan, K.H.; Messing, G.L.; Agrawal, D.K. Microwave Sintering of Alumina at 2.45 GHz. J. Am. Ceram. Soc. 2003, 86, 1307–1312. [Google Scholar] [CrossRef]
- Wang, L.; Guo, S.; Gao, J.; Yang, L.; Hu, T.; Peng, J.; Hou, M.; Jiang, C. Microwave sintering behavior of FeCuCo based metallic powder for diamond alloy tool bit. J. Alloys Compd. 2017, 727, 94–99. [Google Scholar] [CrossRef]
- Yan, M.; Hu, J. Microwave sintering of high-permeability (Ni0.20Zn0.60Cu0.20)Fe1.98O4 ferrite at low sintering temperatures. J. Magn. Magn. Mater. 2006, 305, 171–176. [Google Scholar] [CrossRef]
- Zhu, S.; Fahrenholtz, W.G.; Hilmas, G.E.; Zhang, S.C.; Yadlowsky, E.J.; Keitz, M.D. Microwave sintering of a ZrB2–B4C particulate ceramic composite. Compos. Part A Appl. Sci. Manuf. 2008, 39, 449–453. [Google Scholar] [CrossRef]
- Wang, K.; Wang, X.P.; Liu, R.; Hao, T.; Zhang, T.; Liu, C.S.; Fang, Q.F. The study on the microwave sintering of tungsten at relatively low temperature. J. Nucl. Mater. 2012, 431, 206–211. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Tang, Y.; Chen, J.; Wang, D.; Mao, Z. Low temperature and rapid microwave sintering of Na3Zr2Si2PO12 solid electrolytes for Na-Ion batteries. J. Power Sources 2021, 481, 228924. [Google Scholar] [CrossRef]
- Chanda, A.; Dasgupta, S.; Bose, S.; Bandyopadhyay, A. A Microwave sintering of calcium phosphate ceramics. Mater. Sci. Eng. C 2009, 29, 1144–1149. [Google Scholar] [CrossRef]
- Figiel, P.; Rozmus, M.; Smuk, B. Properties of alumina ceramics obtained by conventional and nonconventional methods for sintering ceramics. J. Achiev. Mater. Manuf. Eng. 2011, 48, 29–34. Available online: http://jamme.acmsse.h2.pl/papers_vol48_1/4814.pdf (accessed on 28 September 2011).
- Croquesel, J.; Bouvard, D.; Chaix, J.; Carry, C.P.; Saunier, S.; Marinel, S. Direct microwave sintering of pure alumina in a single mode cavity: Grain size and phase transformation effects. Acta Mater. 2016, 116, 53–62. [Google Scholar] [CrossRef]
- Shukla, M.; Ghosh, S.; Dandapat, N.; Mandal, A.K.; Balla, V.K. Comparative study on conventional sintering with microwave sintering and vacuum sintering of Y2O3-Al2O3-ZrO2 ceramics. J. Mater. Sci. Chem. Eng. 2016, 42, 71–78. [Google Scholar] [CrossRef]
- Ahn, J.H.; Lee, J.N.; Kim, Y.C.; Ahn, B.T. Microwave-induced low-temperature crystallization of amorphous Si thin films. Curr. Appl. Phys. 2002, 2, 135–139. [Google Scholar] [CrossRef]
- Kumar, P.; Pathak, S.; Singh, A.; Khanduri, H.; Basheed, G.A.; Wang, L.; Pant, R.P. Microwave spin resonance investigation on the effect of the post-processing annealing of CoFe2O4. Nanoscale Adv. 2020, 2, 1939–1948. [Google Scholar] [CrossRef]
- Booske, J.H.; Cooper, R.F.; Freeman, S.A.; Rybakov, K.I.; Semenov, V.E. Microwave ponderomotive forces in solid-state ionic plasmas. Phys. Plasmas 1998, 5, 872835. [Google Scholar] [CrossRef]
- Freeman, S.A.; Booske, J.H.; Cooper, R.F. Microwave field enhancement of charge transport in sodium chloride. Phys. Rev. Lett. 1995, 74, 2042–2045. [Google Scholar] [CrossRef]
- Olevsky, E.A.; Maximenko, A.L.; Grigoryev, E.G. Ponderomotive effects during contact formation in microwave sintering, Modelling Simul. Mater. Sci. Eng. 2013, 21, 055022. [Google Scholar] [CrossRef]
- Rybakov, K.I.; Semenov, V.E. Possibility of plastic deformation of an ionic crystal due to the nonthermal influence of a high-frequency electric field. Phys. Rev. B Condens. Matter. 1994, 49, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Freeman, S.A.; Booske, J.H.; Cooper, R.F. Novel method for measuring intense microwave radiation effects on ionic transport in ceramic materials. Rev. Sci. Instrum. 1995, 66, 3606–3609. [Google Scholar] [CrossRef]
- Xiao, Y.; Xu, F.; Dong, B.; Liu, W.; Hu, X. Discussion on the Local Magnetic Force between Reversely Magnetized Micro Metal Particles in the Microwave Sintering Process. Metals 2017, 7, 47–57. [Google Scholar] [CrossRef]
- Xu, F.; Dong, B.; Hua, X.; Wang, Y.; Liu, W.; Li, Y. Discussion on magnetic-induced polarization Ampere’s force by insitu observing the special particle growth of alumina during microwave sintering. Ceram. Int. 2016, 42, 8296–8302. [Google Scholar] [CrossRef]
- Badev, A.; Heuguet, R.; Marinel, S. Induced electromagnetic pressure during microwave sintering of ZnO in magnetic field. J. Eur. Ceram. Soc. 2013, 33, 1185–1194. [Google Scholar] [CrossRef]
- Jackson, J.D. Classical Electrodynamics, 3rd ed.; John Wiley: New York, NY, USA, 1998. [Google Scholar]
- Lin, M.S.; Liu, L.C.; Barnett, L.R.; Tsai, Y.F.; Chu, K.R. On electromagnetic wave ignited sparks in aqueous dimers. Phys. Plasmas 2021, 28, 102102. [Google Scholar] [CrossRef]
- Birnboim, A.; Calame, J.P.; Carmel, Y. Microfocusing and polarization effects in spherical neck ceramic microstructures during microwave processing. J. Appl. Phys. 1999, 85, 478–482. [Google Scholar] [CrossRef]
- Liu, L.C.; Lin, M.S.; Chu, K.R. Microwave-induced attractive force between dielectric spheres-a potential non-thermal effect in microwave sintering. Mod. Concept Mater. Sci. 2022, 4, 000597. [Google Scholar] [CrossRef]
- Qiao, X.; Xie, X. The effect of electric field intensification at interparticle contacts in microwave sintering. Sci. Rep. 2016, 6, 32163. [Google Scholar] [CrossRef]
- Griffiths, D.J. Introduction to Electrodynamics, 4th ed.; Pearson Education: Boston, MA, USA, 2013. [Google Scholar]
- Monteiro, J.; Costa, L.C.; Valente, M.A.; Santos, T.; Sousa, J. Simulating the electromagnetic field in microwave ovens. In Proceedings of the SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Natal, Brazil, 29 October–1 November 2011; pp. 493–497. [Google Scholar] [CrossRef]
- Chang, A.; Jian, J. The orientational growth of grains in doped BaTiO3 PTCR materials by microwave sintering. J. Mater. Proc. Technol. 2003, 137, 100–101. [Google Scholar] [CrossRef]
Elements | Fe | Cu | Co | Sn | Ni |
---|---|---|---|---|---|
Content (w.t.%) | 40 | 30 | 13 | 7 | 10 |
Average particle size (μm) | 31.7 μm | 23.1 μm | 20.4 μm | 21.5 μm | 20.8 μm |
Purity (w.t.%) | >99.5 | >99.7 | >99.9 | >99.9 | >99.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, M.-S.; Chu, K.-R. On the Non-Thermal Mechanisms in Microwave Sintering of Materials. Materials 2025, 18, 668. https://doi.org/10.3390/ma18030668
Lin M-S, Chu K-R. On the Non-Thermal Mechanisms in Microwave Sintering of Materials. Materials. 2025; 18(3):668. https://doi.org/10.3390/ma18030668
Chicago/Turabian StyleLin, Ming-Syun, and Kwo-Ray Chu. 2025. "On the Non-Thermal Mechanisms in Microwave Sintering of Materials" Materials 18, no. 3: 668. https://doi.org/10.3390/ma18030668
APA StyleLin, M.-S., & Chu, K.-R. (2025). On the Non-Thermal Mechanisms in Microwave Sintering of Materials. Materials, 18(3), 668. https://doi.org/10.3390/ma18030668