Durability of Cutting Tools Obtained by U-FAST Technology in Particleboard Machining
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material of Tools
2.2. Milling Material
2.3. Durability Tests
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, C.; Huang, B.; Liu, Z.; Li, Y.; Zou, D.; Liu, T.; Chen, L. Additive manufacturing of WC-Co cemented carbides: Process, microstructure, and mechanical properties. Addit. Manuf. 2023, 63, 103410. [Google Scholar] [CrossRef]
- Yang, X.H.; Wang, K.F.; Zhang, G.H.; Chou, K.C. Fabrication and performances of WC-Co cemented carbide with a low cobalt content. Int. J. Appl. Ceram. Technol. 2022, 19, 1341–1353. [Google Scholar] [CrossRef]
- Xiang, Z.; Li, Z.; Nie, H.; Chang, F.; Dai, P. Effect of crystallinity of WC on microstructure, properties, and application of WC-Co cemented carbide. J. Superhard Mater. 2021, 43, 21–30. [Google Scholar] [CrossRef]
- Hnatenko, I.O.; Andreiev, I.V.; Lysovenko, S.O.; Roik, O.S.; Tsysar, M.O.; Kosenchuk, T.O. Change of Microstructure and Properties of WC–Co Cemented Carbides as a Result of High Pressure and Temperature. Mater. Sci. 2024, 1–8. [Google Scholar] [CrossRef]
- Buravleva, A.A.; Fedorets, A.N.; Vornovskikh, A.A.; Ognev, A.V.; Nepomnyushchaya, V.A.; Sakhnevich, V.N.; Lembikov, A.O.; Kornakova, Z.E.; Kapustina, O.V.; Tarabanova, A.E.; et al. Spark Plasma Sintering of WC-Based 10 wt%Co Hard Alloy: A Study of Sintering Kinetics and Solid-Phase Processes. Materials 2022, 15, 1091. [Google Scholar] [CrossRef] [PubMed]
- Philbin, P.; Gordon, S. Recent research on the machining of wood-based composite materials. Int. J. Mach. Mach. Mater. 2006, 1, 186–201. [Google Scholar]
- Vitchev, P. Evaluation of the surface quality of the processed wood material depending on the construction of the wood milling tool. Acta Fac. Xylologiae Zvolen 2019, 61, 81–90. [Google Scholar]
- Bendikiene, R.; Keturakis, G. The influence of technical characteristics of wood milling tools on its wear performance. J. Wood Sci. 2017, 63, 606–614. [Google Scholar] [CrossRef]
- Nasir, V.; Cool, J. A review on wood machining: Characterization, optimization, and monitoring of the sawing process. Wood Mater. Sci. Eng. 2020, 15, 1–16. [Google Scholar] [CrossRef]
- Wei, W.; Li, Y.; Xue, T.; Tao, S.; Mei, C.; Zhou, W.; Wang, T. The research progress of machining mechanisms in milling wood-based materials. BioResources 2018, 13, 2139–2149. [Google Scholar] [CrossRef]
- Wilkowski, J.; Barlak, M.; Böttger, R.; Werner, Z.; Konarski, P.; Pisarek, M.; Wachowicz, J.; Von Borany, J.; Auriga, A. Effect of nitrogen ion implantation on the life time of WC-Co tools used in particleboard milling. Wood Mater. Sci. Eng. 2022, 17, 521–532. [Google Scholar] [CrossRef]
- Knouche, H.; Outahyon, A.; Nouveau, C.; Marchal, R.; Zerizer, A.; Butaud, J. Tool wear effect on cutting forces: In routing process of Aleppo pine wood. J. Mater. Process. Technol. 2009, 209, 2918–2922. [Google Scholar] [CrossRef]
- Labidi, C.; Collet, R.; Nouveau, C.; Beer, P.; Nicosia, S.; Djouadi, M. Surface treatments of tools used in industrial wood machining. Surf. Coat. Technol. 2005, 200, 118–122. [Google Scholar] [CrossRef]
- Faga, M.; Settineri, L. Innovative anti-wear coatings on cutting tools for wood machining. Surf. Coat. Technol. 2006, 201, 3002–3007. [Google Scholar] [CrossRef]
- Osipov, A.S.; Klimczyk, P.; Petrusha, I.A.; Melniichuk, Y.O.; Jaworska, L.; Momot, K.; Rumiantseva, Y. Binderless Polycrystalline Cubic Boron Nitride Sintered Compacts for Machining of Cemented Carbides. Ceramics 2024, 7, 1477–1487. [Google Scholar] [CrossRef]
- Sumiya, H. Synthesis of super-hard materials by direct conversion sintering under high pressure and high temperature and their mechanical properties. Zairyo J. Soc. Mater. Sci. 2012, 61, 412–418. [Google Scholar] [CrossRef]
- Errandonea, D. High-pressure melting curves of the transition metals Cu, Ni, Pd, and Pt. Phys. Rev. B 2013, 87, 054108. [Google Scholar] [CrossRef]
- von Spalden, M.; Pötschke, J.; Michaelis, A. Novel Route for Preparing Diamond-Enhanced Cemented Carbides via Reactive Sintering. Metals 2023, 13, 1908. [Google Scholar] [CrossRef]
- Zhao, L.; Jia, D.; Duan, X.; Yang, X.; Zhou, Y. Pressureless sintering of ZrC-based ceramics by enhancing powder sinterability. Int. J. Refract. Met. Hard Mater. 2011, 29, 516–521. [Google Scholar] [CrossRef]
- Kelly, J.P.; Graeve, O.A. Mechanisms of pore formation in high-temperature carbides: Case study of TaC prepared by spark plasma sintering. Acta Mater. 2015, 84, 472–483. [Google Scholar] [CrossRef]
- Chen, I.W.; Wang, X.H. Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 2000, 404, 168–171. [Google Scholar] [CrossRef]
- Kim, H.C.; Shon, I.J.; Ko, I.; Yoon, J.; Doh, J.; Lee, G. Fabrication of ultrafine binderless WC and WC-Ni hard materials by a pulsed current activated sintering process. Int. J. Refract. Met. Hard Mater. 2006, 24, 397–401. [Google Scholar]
- Kim, H.C.; Shon, I.J.; Yoon, J.; Doh, J. Consolidation of ultrafine WC and WC-Co hard materials by pulsed current activated sintering and its mechanical properties. Int. J. Refract. Met. Hard Mater. 2007, 25, 46–52. [Google Scholar] [CrossRef]
- Groza, J.R.; Zavaliangos, A. Sintering activation by external electrical field. Mater. Sci. Eng. A 2000, 287, 171–177. [Google Scholar] [CrossRef]
- Olevsky, E.A.; Garcia-Cardona, C.; Bradbury, W.L.; Haines, C.D.; Martin, D.G.; Kapoor, D. Fundamental aspects of spark plasma sintering: II. Finite element analysis of scalability. J. Am. Ceram. Soc. 2012, 95, 2414–2422. [Google Scholar]
- Giuntini, D.; Olevsky, E.A.; Garcia-Cardona, C.; Maximenko, A.L.; Yurlova, M.S.; Haines, C.D. Localized overheating phenomena and optimization of spark-plasma sintering tooling design. Materials 2013, 6, 2612–2632. [Google Scholar] [CrossRef] [PubMed]
- Anselmi-Tamburini, U.; Gennari, S.; Garay, J.E.; Munir, Z.A. Fundamental investigations on the spark plasma sintering/synthesis process: II. Modeling of current and temperature distributions. Mater. Sci. Eng. A 2005, 394, 139–148. [Google Scholar] [CrossRef]
- Figiel, P.; Biedunkiewicz, A.; Jach, K.; Obrosov, A.; Garbiec, D.; Bik, M.; Weiß, S. Ti-Mo-xTiC composites manufactured by U-FAST reactive sintering. Int. J. Refract. Met. Hard Mater. 2022, 108, 105960. [Google Scholar] [CrossRef]
- Schembri, J.; Kaur, S.; Oskouei, R.H.; Rosinski, M.; Ghomashchi, R.; Rumman, R. Understanding the Potential of U-FAST Sintering Process–An Overview. Asp. Min. Miner. Sci. 2019, 3, 367–372. [Google Scholar]
- Jach, K.; Figiel, P.; Biedunkiewicz, A. Application of U-FAST Technology in Sintering of Titanium Biomaterials. Biomed. J. Sci. Tech. Res. 2019, 23, 17441–17444. [Google Scholar]
- Szlezynger, M.; Maj, Ł.; Pomorska, M.; Morgiel, J.; Jach, K.; Rosinski, M. Effect of upgraded field assisted sintering technology on microstructure of NiAl/CrB 2 composites. Compos. Theory Pr. 2020, 20, 7–10. [Google Scholar]
- Falegnami, A.; Tomassi, A.; Gunella, C.; Amalfitano, S.; Corbelli, G.; Armonaite, K.; Romano, E. Defining conceptual artefacts to manage and design simplicities in complex adaptive systems. Heliyon 2024, 10, e41033. [Google Scholar] [CrossRef]
- Wachowicz, J.; Kruzel, R.; Bałaga, Z.; Ostrowska, A.; Dembiczak, T. Application of U-FAST Technology in Sintering of Submicron WC-Co Carbides. Materials 2023, 16, 2450. [Google Scholar] [CrossRef] [PubMed]
- Wachowicz, J.; Fik, J.; Bałaga, Z.; Stradomski, G. Testing for Abrasion Resistance of WC-Co Composites for Blades Used in Wood-Based Material Processing. Materials 2023, 16, 5836. [Google Scholar] [CrossRef] [PubMed]
- Wachowicz, J.; Wilkowski, J.; Talarek, S. Influence of cutting parameters on the tool life for WC-Co composites in the machining of wood-based materials. Wood Mater. Sci. Eng. 2023, 18, 1780–1789. [Google Scholar] [CrossRef]
Sample | Grain Size (µm) | Cobalt Content (% wt.) | Hardness (HV30) | KIC (MPam1/2) | Literature |
---|---|---|---|---|---|
WC(0.4 µm)_4Co | 0.4 | 4 | 2270 | 8.33 | [33] |
WC(0.8 µm)_4Co | 0.8 | 4 | 2085 | 8.36 | [33] |
WC(0.1 µm)_5Co | 0.1 | 5 | 2192 | 9.27 | [34] |
Wood-Based Board | Density [kg/cm3] | Brinell Hardness | Bending Strength [%] | Modulus of Elasticity [MPa] | Sand Content [%] |
---|---|---|---|---|---|
Three-layer particleboard | 649 | 2.6 | 8.7 | 2212 | 0.185 |
Test No. | Spindle Rotation (rpm) | Feed Rate per Tooth, Δz (mm) | Feed Rate, u (m/min) |
---|---|---|---|
P2 | 18,000 | 0.25 | 4.50 |
P5 | 15,000 | 0.25 | 3.75 |
P8 | 12,000 | 0.25 | 3.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wachowicz, J.; Wilkowski, J.; Dembiczak, T.; Kruzel, R. Durability of Cutting Tools Obtained by U-FAST Technology in Particleboard Machining. Materials 2025, 18, 636. https://doi.org/10.3390/ma18030636
Wachowicz J, Wilkowski J, Dembiczak T, Kruzel R. Durability of Cutting Tools Obtained by U-FAST Technology in Particleboard Machining. Materials. 2025; 18(3):636. https://doi.org/10.3390/ma18030636
Chicago/Turabian StyleWachowicz, Joanna, Jacek Wilkowski, Tomasz Dembiczak, and Robert Kruzel. 2025. "Durability of Cutting Tools Obtained by U-FAST Technology in Particleboard Machining" Materials 18, no. 3: 636. https://doi.org/10.3390/ma18030636
APA StyleWachowicz, J., Wilkowski, J., Dembiczak, T., & Kruzel, R. (2025). Durability of Cutting Tools Obtained by U-FAST Technology in Particleboard Machining. Materials, 18(3), 636. https://doi.org/10.3390/ma18030636