Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (458)

Search Parameters:
Keywords = WC-Co

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4468 KiB  
Article
A Matrix Effect Calibration Method of Laser-Induced Breakdown Spectroscopy Based on Laser Ablation Morphology
by Hongliang Pei, Qingwen Fan, Yixiang Duan and Mingtao Zhang
Appl. Sci. 2025, 15(15), 8640; https://doi.org/10.3390/app15158640 (registering DOI) - 4 Aug 2025
Abstract
To improve the accuracy of three-dimensional (3D) reconstruction under microscopic conditions for laser-induced breakdown spectroscopy (LIBS), this study developed a novel visual platform by integrating an industrial CCD camera with a microscope. A customized microscale calibration target was designed to calibrate intrinsic and [...] Read more.
To improve the accuracy of three-dimensional (3D) reconstruction under microscopic conditions for laser-induced breakdown spectroscopy (LIBS), this study developed a novel visual platform by integrating an industrial CCD camera with a microscope. A customized microscale calibration target was designed to calibrate intrinsic and extrinsic camera parameters accurately. Based on the pinhole imaging model, disparity maps were obtained via pixel matching to reconstruct high-precision 3D ablation morphology. A mathematical model was established to analyze how key imaging parameters—baseline distance, focal length, and depth of field—affect reconstruction accuracy in micro-imaging environments. Focusing on trace element detection in WC-Co alloy samples, the reconstructed ablation craters enabled the precise calculation of ablation volumes and revealed their correlations with laser parameters (energy, wavelength, pulse duration) and the physical-chemical properties of the samples. Multivariate regression analysis was employed to investigate how ablation morphology and plasma evolution jointly influence LIBS quantification. A nonlinear calibration model was proposed, significantly suppressing matrix effects, achieving R2 = 0.987, and reducing RMSE to 0.1. This approach enhances micro-scale LIBS accuracy and provides a methodological reference for high-precision spectral analysis in environmental and materials applications. Full article
(This article belongs to the Special Issue Novel Laser-Based Spectroscopic Techniques and Applications)
Show Figures

Figure 1

21 pages, 5496 KiB  
Article
Optimisation of Response Surface Methodology Based on Finite Element Analysis for Laser Cladding of Highly Hardened WC(Co,Ni) Coatings
by Dezheng Wu, Canyu Ding and Mingder Jean
Materials 2025, 18(15), 3658; https://doi.org/10.3390/ma18153658 - 4 Aug 2025
Viewed by 50
Abstract
In the present work, the optimization of ceramic-based composite WC(Co,Ni) welds by laser cladding was carried out using response surface methodology based on finite element analysis. The heat distribution and temperature field of laser-melted WC(Co,Ni) ceramic coatings were simulated using ANSYS software, which [...] Read more.
In the present work, the optimization of ceramic-based composite WC(Co,Ni) welds by laser cladding was carried out using response surface methodology based on finite element analysis. The heat distribution and temperature field of laser-melted WC(Co,Ni) ceramic coatings were simulated using ANSYS software, which allowed the computation of the distribution of residual stresses. The results show that the isotherms in the simulation of the temperature field are elliptical in shape, and that the isotherms in front of the moving heat source are dense with a larger temperature gradient, while the isotherms behind the heat source are sparse with a smaller temperature gradient. In addition, the observed microstructural evolution shows that the melting zone domains of WC(Co,Ni) are mainly composed of unmelted carbides. These carbides are dendritic, rod-like, leaf-like, or net-like, and are agglomerated into smaller groups. The W content of these unmelted carbides exceeds 80%, while the C content is around 1.5–3.0%. The grey areas are composed of WC, Co and Ni compounds. Based on the regression model, a quadratic model was successfully constructed. A three-dimensional profile model of the residual stress behaviour was further explored. The estimated values of the RSM-based FEA model for residual stress are very similar to the actual results, which shows that the model is effective in reducing residual stress by laser cladding. Full article
(This article belongs to the Special Issue Advances in Plasma and Laser Engineering (Second Edition))
Show Figures

Figure 1

16 pages, 6322 KiB  
Article
Mechanism of Hardness Evolution in WC-Co Cemented Carbide Subjected to Liquid-Phase Laser Ablation
by Xiaoyan Guan, Yi Ding, Kang Zhao, Yujie Fan, Yuchen Du, Suyang Wang and Jing Xia
Coatings 2025, 15(8), 901; https://doi.org/10.3390/coatings15080901 (registering DOI) - 2 Aug 2025
Viewed by 181
Abstract
To investigate the effect of liquid-phase laser ablation on the hardness of WC-Co cemented carbide, this study performed hardness testing, elemental distribution analysis, and XRD phase analysis. The influence of ablation times on the hardness, elemental distribution, and phase composition of WC-Co cemented [...] Read more.
To investigate the effect of liquid-phase laser ablation on the hardness of WC-Co cemented carbide, this study performed hardness testing, elemental distribution analysis, and XRD phase analysis. The influence of ablation times on the hardness, elemental distribution, and phase composition of WC-Co cemented carbide was examined, and a model describing the hardness evolution mechanism under liquid-phase laser ablation was proposed. The results demonstrated that the hardness of WC-Co cemented carbide increased with the number of ablations. After 14 ablation times, the maximum hardness reached 2800 HV, representing an increase of 51%–56% compared to the matrix hardness. As the number of ablations increased, the content of ditungsten carbide (W2C) and tungsten carbide (WC) in the cemented carbide increased, the WC grain size decreased, the dislocation density increased, and the distribution became more uniform. The refinement of WC grains and the elevated dislocation density facilitated stronger intergranular bonding, thereby significantly enhancing the material’s hardness. This study provides theoretical guidance for improving the surface mechanical properties of WC-Co cemented carbide tools through liquid-phase laser ablation. Full article
Show Figures

Figure 1

11 pages, 2733 KiB  
Article
Laser Texturing of Tungsten Carbide (WC-Co): Effects on Adhesion and Stress Relief in CVD Diamond Films
by Argemiro Pentian Junior, José Vieira da Silva Neto, Javier Sierra Gómez, Evaldo José Corat and Vladimir Jesus Trava-Airoldi
Surfaces 2025, 8(3), 54; https://doi.org/10.3390/surfaces8030054 - 30 Jul 2025
Viewed by 221
Abstract
This study proposes a laser texturing method to optimize adhesion and minimize residual stresses in CVD diamond films deposited on tungsten carbide (WC-Co). WC-5.8 wt% Co substrates were textured with quadrangular pyramidal patterns (35 µm) using a 1064 nm nanosecond-pulsed laser, followed by [...] Read more.
This study proposes a laser texturing method to optimize adhesion and minimize residual stresses in CVD diamond films deposited on tungsten carbide (WC-Co). WC-5.8 wt% Co substrates were textured with quadrangular pyramidal patterns (35 µm) using a 1064 nm nanosecond-pulsed laser, followed by chemical treatment (Murakami’s solution + aqua regia) to remove surface cobalt. Diamond films were grown via HFCVD and characterized by Raman spectroscopy, EDS, and Rockwell indentation. The results demonstrate that pyramidal texturing increased the surface area by a factor of 58, promoting effective mechanical interlocking and reducing compressive stresses to −1.4 GPa. Indentation tests revealed suppression of interfacial cracks, with propagation paths deflected toward textured regions. The pyramidal geometry exhibited superior cutting post-deposition cooling time for stress relief from 3 to 1 h. These findings highlight the potential of laser texturing for high-performance machining tool applications. Full article
Show Figures

Figure 1

16 pages, 10539 KiB  
Article
Comparative Corrosion and Wear Behaviors of Cermet Coatings Obtained from Conventional and Recycled Powders
by Dino Woelk, Julian Eßler, Ion-Dragos Utu and Gabriela Marginean
Appl. Sci. 2025, 15(14), 7654; https://doi.org/10.3390/app15147654 - 8 Jul 2025
Viewed by 344
Abstract
Many components in industry are subjected to high loads during operation and therefore often do not reach their intended service life. Conventional steels frequently do not provide sufficient protection against wear and corrosion. One solution is to coat these components using methods like [...] Read more.
Many components in industry are subjected to high loads during operation and therefore often do not reach their intended service life. Conventional steels frequently do not provide sufficient protection against wear and corrosion. One solution is to coat these components using methods like thermal spraying to apply cermet coatings such as Cr3C2-NiCr or WC-Co-Cr. In light of increasingly strict environmental regulations, more eco-friendly alternatives are needed, especially ones that use little or no Cr, Ni, Co, or W. Another alternative is the recycling of powder materials, which is the focus of this research project. This study investigated whether filter dust from an HVOF system could be used to develop a new coating suitable for use in applications requiring resistance to wear and corrosion. This is challenging as the filter dusts have heterogeneous compositions and irregular particle sizes. Nevertheless, this recycled material, referred to as “Green Cermets” (GCs), offers previously untapped potential that may also be of ecological interest. An established WC-Co-Cr coating served as a reference. In addition to friction wear and corrosion resistance, the study also examined particle size distribution, hardness, microstructure, and susceptibility to crack formation at the interface and inside the coating. Even though the results revealed a diminished performance of the GC coatings relative to the conventional WC-CoCr, they may still be applicable in various industrial applications. Full article
Show Figures

Figure 1

14 pages, 18495 KiB  
Article
Analysis of Biochar–Cement Composites by SEM/EDS: Interfacial Interactions and Effects on Mechanical Strength
by Rafaela Paula, Jaqueline Carvalho, Antônio Júnior, Filipe Fagundes, Robson de Lima, Evaneide Lima, Carlos Oliveira, Magno de Oliveira, Augusto Bezerra, Osania Ferreira and Alan Machado
C 2025, 11(3), 45; https://doi.org/10.3390/c11030045 - 29 Jun 2025
Cited by 1 | Viewed by 699
Abstract
Portland cement production is one of the main global sources of CO2 emissions, driving the search for sustainable solutions to reduce its environmental footprint. This study evaluated the use of biochar derived from sugarcane bagasse as a partial cement replacement in cementitious [...] Read more.
Portland cement production is one of the main global sources of CO2 emissions, driving the search for sustainable solutions to reduce its environmental footprint. This study evaluated the use of biochar derived from sugarcane bagasse as a partial cement replacement in cementitious composites, aiming to investigate its effects on mechanical and microstructural properties. Composites were prepared with 0, 2, and 5 (% w w−1) biochar at two water-to-cement (w/c) ratios: 0.28 and 0.35. It was hypothesized that the porous structure and carbon-rich composition of biochar could enhance the microstructure of the cementitious matrix and contribute to strength development. Characterization of the biochar indicated compliance with the European Biochar Certificate (EBC) standard, high thermal stability, and notable water retention capacity. Mechanical testing revealed that incorporating 5% w w−1 biochar increased compressive strength by up to 48% in the 0.35 w/c formulation compared to the control. Microstructural analyses (SEM/EDS) showed good interaction between the biochar and the cementitious matrix, with the formation of hydration products at the interfaces. The results confirm the potential of sugarcane bagasse biochar as a supplementary cementitious material, promoting more sustainable composites with improved mechanical performance and reduced environmental impact. Full article
(This article belongs to the Section Carbon Materials and Carbon Allotropes)
Show Figures

Graphical abstract

12 pages, 4460 KiB  
Article
Influence of Laser Energy Variation on the Composition and Properties of Gradient-Structured Cemented Carbide Layers Produced by LP-DED
by Yorihiro Yamashita, Kenta Kawabata, Hayato Mori, Eito Ose and Takahiro Kunimine
J. Manuf. Mater. Process. 2025, 9(7), 218; https://doi.org/10.3390/jmmp9070218 - 27 Jun 2025
Viewed by 328
Abstract
In this study, graded cemented carbide layers were fabricated using Laser Powder-Directed Energy Deposition (LP-DED) to investigate the effects of laser input energy and WC content on crack formation, compositional distribution, and hardness. Two-layer structures were formed, with the first layer containing either [...] Read more.
In this study, graded cemented carbide layers were fabricated using Laser Powder-Directed Energy Deposition (LP-DED) to investigate the effects of laser input energy and WC content on crack formation, compositional distribution, and hardness. Two-layer structures were formed, with the first layer containing either 30.5 wt.% or 42.9 wt.% WC and the second layer containing 63.7 wt.% WC. Crack formation was evaluated in situ using acoustic emission (AE) sensors, and elemental composition and Vickers hardness were measured across the cross-section of the deposited layers. The results showed that crack formation increased with higher laser power and higher WC content in the first layer. Elemental analysis revealed that higher laser input led to greater Co enrichment and reduced W content near the surface. Additionally, the formation of brittle structures was observed under high-energy conditions, contributing to increased hardness but decreased toughness. These findings indicate that both WC content and laser energy strongly influence the microstructural evolution and mechanical properties of graded cemented carbide layers. Optimizing the balance between WC content and laser parameters is essential for improving the crack resistance and performance of cemented carbide layers in additive manufacturing applications. Full article
Show Figures

Figure 1

22 pages, 8571 KiB  
Article
Optimization of Micro-Sandblasting Parameters for Enhanced Adhesion and Wear Resistance of AlTiSiN-Coated Tools
by Junlong Wang, Jiaxuan Du, Zhipeng Liu, Hongliang Qian and Qi Wang
Coatings 2025, 15(7), 757; https://doi.org/10.3390/coatings15070757 - 26 Jun 2025
Viewed by 389
Abstract
Micro-sandblasting pretreatment was applied to AlTiSiN-coated WC–Co tools to enhance cutting performance in 316 L stainless steel milling. An L9(33) Taguchi orthogonal array varied passivation pressure (0.1, 0.2, and 0.3 MPa), gun traverse speed (60, 80, and 100 m/min), [...] Read more.
Micro-sandblasting pretreatment was applied to AlTiSiN-coated WC–Co tools to enhance cutting performance in 316 L stainless steel milling. An L9(33) Taguchi orthogonal array varied passivation pressure (0.1, 0.2, and 0.3 MPa), gun traverse speed (60, 80, and 100 m/min), and tool rotation speed (20, 30, and 40 r/min). Coating thickness varied only from 0.93 to 1.19 μm, and surface roughness remained within 0.044–0.077 μm, confirming negligible thickness and roughness effects. Under optimized conditions, coating adhesion strength and nano-hardness both exhibited significant improvements. A weighted-scoring method balancing these two responses identified the optimal pretreatment parameters as 0.1 MPa, 80 m/min, and 20 r/min. Milling tests at 85 m/min—using flank wear VBₘₐₓ = 0.1 mm as the failure criterion—demonstrated a cutting distance increase from 4.25 m (untreated) to 12.75 m (pretreated), a 200% improvement. Wear progressed through three stages: rapid initial wear, extended steady wear due to Al2O3 protective-film formation and Si-induced oxygen-diffusion suppression, and accelerated wear. Micro-sandblasting further prolonged the steady-wear phase by removing residual cobalt binder, exposing WC grains, and offsetting tensile residual stresses. These findings establish a practical, cost-effective micro-sandblasting pretreatment strategy that significantly enhances coating adhesion, hardness, and tool life, providing actionable guidance for improving the durability and machining performance of coated carbide tools in difficult-to-cut applications. Full article
Show Figures

Figure 1

21 pages, 3361 KiB  
Article
Alternative Supports for Electrocatalysis of the Oxygen Evolution Reaction in Alkaline Media
by Gwénaëlle Kéranguéven, Ivan Filimonenkov, Thierry Dintzer and Matthieu Picher
Electrochem 2025, 6(3), 23; https://doi.org/10.3390/electrochem6030023 - 25 Jun 2025
Viewed by 449
Abstract
The anodic stability of tungsten carbide (WC) and iron oxide with a spinel structure (Fe3O4) were compared against similar data for nanostructured, boron-doped diamond (BDD), and the benchmark Vulcan XC72 carbon, in view of their eventual application as alternative [...] Read more.
The anodic stability of tungsten carbide (WC) and iron oxide with a spinel structure (Fe3O4) were compared against similar data for nanostructured, boron-doped diamond (BDD), and the benchmark Vulcan XC72 carbon, in view of their eventual application as alternative supports for the anion exchange membrane electrolyzer anode. To this end, metal oxide composites were prepared by the in situ autocombustion (ISAC) method, and the anodic behavior of materials (composites as well as supports alone) was investigated in 1 M NaOH electrolyte by the rotating ring–disc electrode method, which enables the separation oxygen evolution reaction and materials’ degradation currents. Among all supports, BDD has proven to be the most stable, while Vulcan XC72 is the least stable under the anodic polarization, with Fe3O4 and WC demonstrating intermediate behavior. The Co3O4-BDD, -Fe3O4, -WC, and -Vulcan composites prepared by the ISAC method were then tested as catalysts of the oxygen evolution reaction. The Co3O4-BDD and Co3O4-Fe3O4 composites appear to be competitive electrocatalysts for the OER in alkaline medium, showing activity comparable to the literature and higher support stability towards oxidation, either in cyclic voltammetry or chronoamperometry stability tests. On the contrary, WC- and Vulcan-based composites are prone to degradation. Full article
(This article belongs to the Topic Electrocatalytic Advances for Sustainable Energy)
Show Figures

Graphical abstract

23 pages, 5785 KiB  
Article
Method for Determining Contact Temperature of Tool Rake Face During Orthogonal Turning of Ti-6Al-4V Alloy
by Łukasz Ślusarczyk and Agnieszka Twardowska
Materials 2025, 18(13), 2980; https://doi.org/10.3390/ma18132980 - 24 Jun 2025
Viewed by 349
Abstract
This paper proposes a method for determining the contact temperature in the secondary shear zone. The input data include the results of the experimental tests of the orthogonal turning of a Ti-6Al-4V titanium workpiece using uncoated WC-Co tools with a flat rake face. [...] Read more.
This paper proposes a method for determining the contact temperature in the secondary shear zone. The input data include the results of the experimental tests of the orthogonal turning of a Ti-6Al-4V titanium workpiece using uncoated WC-Co tools with a flat rake face. The cutting force components were recorded using a piezoelectric dynamometer, a thermovision camera was used to record the temperature in the cutting zone, and a high-speed camera was used to record the chip-forming process. The independent variables included machining parameters, feed rate, cutting speed, and rake angle. A dual-zone thermomechanical cutting process model that accounted for the sticking and sliding areas was adapted for the identification of the heat flux in the chip–rake face contact zone. Then, based on the Shaw approach, the partition coefficients were determined for the contact temperature on the chip–tool tip contact. In addition, the results of the experimental tests allowed the determination of the relationship among the process parameters, friction coefficients, and the length of the contact of the chip with the tool rake face. A graphical visualization of the temperature distribution on the tool rake face was performed using the MATLAB PDE 3.9 software package. Although the application of the dual-zone model has been well presented in the literature, the results provided in this paper may be helpful in analyzing and modeling thermal phenomena in the secondary shear zone. Full article
Show Figures

Figure 1

13 pages, 3330 KiB  
Article
Super Hydrophobic UHMWPE/PTFE/PVA Composites with Low Friction: Preparation and Wear Mechanism
by Hai Wang, Zhiwei Shao, Kuiyuan Shen, Buhe Bateer, Fushen Ren and Xiaowen Qi
Polymers 2025, 17(12), 1664; https://doi.org/10.3390/polym17121664 - 16 Jun 2025
Viewed by 433
Abstract
This study develops novel superhydrophobic UHMWPE/PTFE/PVA composites via hot-pressing sintering to achieve ultra-low friction and enhanced wear resistance. The ternary system synergistically combines UHMWPE’s mechanical stability, PTFE’s lubricity, and PVA’s dispersion/binding capability. Results show PTFE disrupts UHMWPE crystallization, reducing melting temperature by 2.77 [...] Read more.
This study develops novel superhydrophobic UHMWPE/PTFE/PVA composites via hot-pressing sintering to achieve ultra-low friction and enhanced wear resistance. The ternary system synergistically combines UHMWPE’s mechanical stability, PTFE’s lubricity, and PVA’s dispersion/binding capability. Results show PTFE disrupts UHMWPE crystallization, reducing melting temperature by 2.77 °C and enabling energy dissipation. All composites exhibit hydrophobicity, with optimal formulations (UPP3/UPP4) reaching superhydrophobicity. Tribological testing under varied loads and frequencies reveals low friction, where UPP1 achieves a COF of 0.043 and wear rate below 1.5 × 10−5 mm3/(N·m) under low-load conditions. UHMWPE oxidative degradation forming carboxylic acids at the interface (C=O at 289 eV, C–O at 286 eV). Formation of tungsten oxides (WO3/WO2), carbides (WC), and transfer films on steel counterparts. A four-step tribochemical reaction pathway is established. PVA promotes uniform transfer films, while PTFE lamellar peeling and UHMWPE chain stability enable sustained lubrication. Carbon-rich stratified accumulations under high-load/speed increase COF via abrasive effects. The composites demonstrate exceptional biocompatibility and provide a scalable solution for biomedical and industrial tribological applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

17 pages, 39047 KiB  
Article
Process Studies on the W-C-Ti System Using a High-Throughput Laser-Based Additive Manufacturing Approach
by Tim Schubert, Christiana Malchus, Julian Schurr, Emanuel Wengenmayr, Timo Bernthaler and Gerhard Schneider
Metals 2025, 15(6), 664; https://doi.org/10.3390/met15060664 - 14 Jun 2025
Viewed by 352
Abstract
Conventional WC-Co hard metals have proven to be difficult to manufacture by means of laser powder bed fusion (PBF-LB), resulting in residual pores, crack formation, foreign phase formation, and the inhomogeneous growth of the carbide phase. Alternative compositions such as the W-C-Ti system [...] Read more.
Conventional WC-Co hard metals have proven to be difficult to manufacture by means of laser powder bed fusion (PBF-LB), resulting in residual pores, crack formation, foreign phase formation, and the inhomogeneous growth of the carbide phase. Alternative compositions such as the W-C-Ti system presented in this study need to be investigated. Through the employment of a high-throughput screening approach, 11 alloy compositions were investigated to determine the influence of the carbon content and tungsten–titanium ratios on microstructure formation and basic mechanical properties. Two screenings were conducted, with one varying the carbon content (10–35 at.%) and the other adjusting the W/Ti ratios (10:90 to 60:40 at.%). Microstructural analyses using scanning electron microscopy (SEM), X-ray diffraction (XRD), and hardness measurements provided insights into phase formation, grain distribution, and mechanical properties. The results showed that increasing the carbon content significantly enhanced the hardness (from 681 HV (10 at.% C) to 1898 HV (35 at.% C)) due to higher δ-(Ti,W)C1−x carbide phase fractions. Alloys with a higher tungsten content exhibited finer microstructures and an improved crack resistance while maintaining a high hardness (1900–2100 HV). This study identified an alloy with 32.5 at.% W, 32.5 at.% Ti, and 35 at.% C as a promising candidate for further investigation, with properties similar to those of a conventional WC-Co hard metal. Full article
(This article belongs to the Section Additive Manufacturing)
Show Figures

Figure 1

21 pages, 5454 KiB  
Article
Interplay of Carbon Content and Sintering Temperature on Microstructure and Mechanical Behavior in Ultrafine-Grained WC-10CoNiFe and WC-10Co Cemented Carbides
by Ji Zhang, Kun Li, Yubo Chen, Cheng Qian, Shuailong Zhang and Huichao Cheng
Materials 2025, 18(12), 2789; https://doi.org/10.3390/ma18122789 - 13 Jun 2025
Viewed by 452
Abstract
As a crucial component of cemented carbide, the binder phase exerts a profound influence on its microstructure and mechanical properties. In this study, ultrafine-grained WC-10CoNiFe and WC-10Co cemented carbides, with grain sizes ranging from 0.25 to 0.4 μm, were fabricated via powder mixing, [...] Read more.
As a crucial component of cemented carbide, the binder phase exerts a profound influence on its microstructure and mechanical properties. In this study, ultrafine-grained WC-10CoNiFe and WC-10Co cemented carbides, with grain sizes ranging from 0.25 to 0.4 μm, were fabricated via powder mixing, forming, and sintering processes utilizing 0.4 μm WC powder as the starting material. The effects of carbon content (5.44–5.50 wt%) and sintering temperatures (1410–1500 °C) on the grain organization and mechanical properties of these cemented carbides were systematically investigated. The results revealed that WC-10CoNiFe achieved its optimal mechanical properties at a carbon content of 5.46 wt% and a sintering temperature of 1450 °C, exhibiting a flexural strength of 2999 MPa and a hardness of 1765 HV. Likewise, WC-10Co attained its peak performance at a carbon content of 5.48 wt% and a sintering temperature of 1410 °C, with a flexural strength of 3598 MPa and a hardness of 1853 HV. Remarkably, the finer grain size of the WC-10CoNiFe alloy (0.261 µm), compared to that of WC-10Co (0.294 µm), can be ascribed to the suppression of the dissolution–reprecipitation process by the multi-principal-element alloy binder. This study demonstrated the synergistic regulation of microstructure and mechanical properties in ultrafine-grained cemented carbides through the incorporation of a multi-principal-element alloy binder. This innovative strategy not only effectively refines the grain size but also endows the alloy with exceptional mechanical properties, offering a valuable new perspective for the research and development of high-performance cemented carbides. Full article
(This article belongs to the Special Issue Research on Performance Improvement of Advanced Alloys)
Show Figures

Figure 1

13 pages, 2832 KiB  
Article
The Synthesis of B-Doped Porous Carbons via a Sodium Metaborate Tetrahydrate Activating Agent: A Novel Approach for CO2 Adsorption
by Junting Wang, Yingyi Wang, Xiaohan Liu, Qiang Xiao, Muslum Demir, Mohammed K. Almesfer, Suleyman Gokhan Colak, Linlin Wang, Xin Hu and Ya Liu
Molecules 2025, 30(12), 2564; https://doi.org/10.3390/molecules30122564 - 12 Jun 2025
Viewed by 455
Abstract
The CO2 capture from flue gas using biomass-derived porous carbons presents an environmentally friendly and sustainable strategy for mitigating carbon emissions. However, the conventional fabrication of porous carbons often relies on highly corrosive activating agents like KOH and ZnCl2, posing [...] Read more.
The CO2 capture from flue gas using biomass-derived porous carbons presents an environmentally friendly and sustainable strategy for mitigating carbon emissions. However, the conventional fabrication of porous carbons often relies on highly corrosive activating agents like KOH and ZnCl2, posing environmental and safety concerns. To address this challenge, in the present work sodium metaborate tetrahydrate (NaBO2·4H2O) has been utilized as an alternative, eco-friendly activating agent for the first time. Moreover, a water chestnut shell (WCS) is used as a sustainable precursor for boron-doped porous carbons with varied microporosity and boron concentration. It was found out that pyrolysis temperature significantly determines the textural features, elemental composition, and CO2 adsorption capacity. With a narrow micropore volume of 0.27 cm3/g and a boron concentration of 0.79 at.% the representative adsorbent presents the maximum CO2 adsorption (2.51 mmol/g at 25 °C, 1 bar) and a CO2/N2 selectivity of 18 in a 10:90 (v/v) ratio. Last but not least, the as-prepared B-doped carbon adsorbent possesses a remarkable cyclic stability over five cycles, fast kinetics (95% equilibrium in 6.5 min), a modest isosteric heat of adsorption (22–39 kJ/mol), and a dynamic capacity of 0.80 mmol/g under simulated flue gas conditions. This study serves as a valuable reference for the fabrication of B-doped carbons using an environmentally benign activating agent for CO2 adsorption application. Full article
(This article belongs to the Special Issue Porous Carbons for CO2 Adsorption and Capture)
Show Figures

Figure 1

17 pages, 4741 KiB  
Article
Effects of Water-to-Cement and Sand-to-Binder Ratio on Mechanical and Drying Shrinkage Properties of Low-Carbon Mortar Containing Biochar Aggregate
by Shasha Chen, Junhui Zhang and Hao Yang
Materials 2025, 18(12), 2750; https://doi.org/10.3390/ma18122750 - 11 Jun 2025
Viewed by 488
Abstract
Biochar, serving as a carbon sequestration material, has garnered significant attention. In this study, the effects of water-to-cement (W/C) and sand-to-binder (S/B) ratio on the macroscopic mechanical properties, dry-shrinkage behavior, and water transport properties of biochar mortar, as well as the microstructure of [...] Read more.
Biochar, serving as a carbon sequestration material, has garnered significant attention. In this study, the effects of water-to-cement (W/C) and sand-to-binder (S/B) ratio on the macroscopic mechanical properties, dry-shrinkage behavior, and water transport properties of biochar mortar, as well as the microstructure of the mortar, are described. The results indicate that the compressive strength of the mortar decreases gradually with increases in the S/B ratio, while its flexural strength increases gradually with increases in the S/B ratio. Meanwhile, with increases in W/C and S/B, the drying shrinkage rate decreases, and the extent of water loss tends to be comparable to the drying shrinkage rate. The water absorption of biochar mortar increases as the W/C and S/B ratios increase. This is also reflected in the depth of water ingress in biochar mortars, which increases significantly with rising W/C and S/B ratios. Moreover, the water absorption coefficients of different mortars vary significantly only in the first few hours, and their final water absorption coefficients and ingress depths are similar. The SEM results indicate that biochar can provide nucleation points for hydration products to form a unique binding mechanism between them and the cement matrix. In addition, when the sand-to-cement ratio reaches 1.15, biochar reduces CO2 emissions by 104.57 kg, and biochar mortar shows good potential for CO2 sequestration. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop