Study on the Mechanical Properties of Modified Sludge Soil Based on an SM-C Modifier
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Compaction Test
2.3. Unconfined Compressive Strength Test
2.3.1. Design of Experimental Parameters for Modifier Dosage
2.3.2. Experimental Plan Design
2.4. CBR Test
2.5. Triaxial Test
2.6. Consolidation Test
3. Results and Discussion
3.1. Results and Analysis of Compaction Test
- (1)
- The variation law of compaction curve with dosage
- (2)
- The variation law of maximum dry density with the dosage of modifier
- (3)
- The variation law of optimal moisture content with the dosage of modifier
3.2. Results and Analysis of Unconfined Compressive Strength Test
3.3. Results and Analysis of CBR Test
3.4. Results and Analysis of Triaxial Test
3.4.1. Analysis of Test Results
3.4.2. Stress–Strain Analysis
3.5. Subsection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Editorial Board of China Journal of Highway and Transport. A Review of Academic Research on Roadbed Engineering in China. China J. Highw. Transp. 2021, 34, 1–49. [Google Scholar]
- Zhou, S.; Zhang, R.; Xiao, Y.; Li, B.; Zeng, Z. Review on Improvement Methods and Principles of Special Soil. J. Chang. Univ. Sci. Technol. 2024, 21, 21–34. [Google Scholar]
- Zhong, W.L.; Sun, Y.H.; Zhao, X.; Fan, L.F. Study on Synthesis and Water Stability of Geopolymer Pavement Base Material Using Waste Sludge. J. Clean. Prod. 2024, 445, 141331. [Google Scholar] [CrossRef]
- Arabani, M.; Shalchian, M.M.; Rahimabadi, M.M. The Influence of Rice Fiber and Nanoclay on Mechanical Properties and Mechanisms of Clayey Soil Stabilization. Constr. Build. Mater. 2023, 407, 133542. [Google Scholar] [CrossRef]
- Meena, S.K.; Sahu, R.; Ayothiraman, R. Utilization of Waste Wheat Straw Fibers for Improving the Strength Characteristics of Clay. J. Nat. Fibers 2021, 18, 1404–1418. [Google Scholar] [CrossRef]
- Baldin, C.R.B.; Kawanami, M.Y.; Costa, W.G.S.; Bordignon, V.R.; da Luz, C.C.; dos Santos Izzo, R.L. Mechanical Properties of a Clay Soil Reinforced with Rice Husk under Drained and Undrained Conditions. J. Rock Mech. Geotech. Eng. 2023, 15, 2676–2686. [Google Scholar] [CrossRef]
- Qian, B.; Yu, W.; Lv, B.; Kang, H.; Shu, L.; Li, N.; Wang, W. Mechanical Properties and Micro Mechanism of Nano-Clay-Modified Soil Cement Reinforced by Recycled Sand. Sustainability 2021, 13, 7758. [Google Scholar] [CrossRef]
- Haeri, S.M.; Valishzadeh, A. Evaluation of Using Different Nanomaterials to Stabilize the Collapsible Loessial Soil. Int. J. Civ. Eng. 2021, 19, 583–594. [Google Scholar] [CrossRef]
- Zhang, R.; Zheng, S.; Zheng, J. Study on the Strength Characteristics of Cement-Stabilized High Water Content Clay. J. Huazhong Univ. Sci. Technol. Nat. Sci. Ed. 2015, 43, 101–106. [Google Scholar]
- Zheng, S. Experimental Study on the Strength Influencing Factors of Low Cement Content Stabilization of High Water Content Sludge. Master’s Thesis, Huazhong University of Science and Technology, Wuhan, China, 2015. [Google Scholar]
- Wang, W.; Yuan, F.; Jiang, J.; Cai, G. Strength Characteristics and Prediction Model of Solidified Sludge with High Water Content from Reclamation Projects. Chin. J. Undergr. Space Eng. 2021, 17, 461–467. [Google Scholar]
- Ding, J.; Liu, T.; Cao, Y.; Yang, R. Unconfined Compressive Strength Tests and Strength Prediction of Solidified Dredged Sludge with High Water Content. Chin. J. Geotech. Eng. 2013, 35, 55–60. [Google Scholar]
- Huang, L.; Wang, H.; Tan, Y.; Wu, J.; Zuo, Q. Study on the Long-Term Strength Development and Prediction Model of Solidified Sludge Soil. J. Wuhan Univ. Technol. 2016, 38, 70–75. [Google Scholar]
- He, J.; Lv, X.; Zhu, Y. The Effect of Curing Temperature on the Strength Properties of Alkali Slag-Cement Sludge. Adv. Sci. Technol. Water Resour. 2023, 43, 58–65. [Google Scholar]
- Wang, D.; Xu, W. Experimental Study on Long-Term Strength and Deformation Characteristics of Solidified Sludge. J. Cent. South Univ. Nat. Sci. 2013, 44, 332–339. [Google Scholar]
- Huang, Y.; Zhu, W.; Zhou, X.; Zhang, C. Experimental Study on Compressive Characteristics of Solidified Sludge. Rock Soil Mech. 2012, 33, 2923–2928. [Google Scholar]
- Xu, W.; Luo, R. Evaluation of interaction between emulsified asphalt and mineral powder using rheology. Constr. Build. Mater. 2022, 318, 125990. [Google Scholar] [CrossRef]
- Xu, W.; Guan, Y.H.; Shah, Y.I.; Luo, R.; Xu, Z.Q. Study on curing characteristics of cold-mixed and cold-laid asphalt mixture based on electrical properties. Constr. Build. Mater. 2022, 330, 127223. [Google Scholar] [CrossRef]
- Li, C.; Wang, S.; Ding, J.; Zhang, S.; Gao, M. Mechanical and microstructural properties of lime-treated excavated soil improved with different industry by-products. Constr. Build. Mater. 2024, 318, 125990. [Google Scholar] [CrossRef]
Modifier Content (%) | 0 | 4 | 8 | 10 | 12 | 15 |
---|---|---|---|---|---|---|
OWC (%) | 19.4 | 20.6 | 21.6 | 22.3 | 22.7 | 23 |
MDD (g/cm3) | 1.737 | 1.678 | 1.633 | 1.615 | 1.606 | 1.600 |
Curing Age | Unconfined Compressive Strength Value (MPa) | ||||
---|---|---|---|---|---|
4% | 8% | 10% | 12% | 15% | |
1d | 0.490 | 0.516 | 0.543 | 0.646 | 0.592 |
3d | 0.586 | 0.645 | 0.675 | 0.770 | 0.714 |
7d | 0.664 | 0.775 | 0.819 | 0.898 | 0.843 |
14d | 0.709 | 0.861 | 0.888 | 0.963 | 0.904 |
28d | 0.746 | 0.891 | 0.922 | 0.983 | 0.926 |
Degree of Compaction | CBR Value | |||
---|---|---|---|---|
4% | 8% | 10% | 12% | |
92% | 5.5 | 9.7 | 11.8 | 10.4 |
94% | 7.4 | 11.9 | 14.5 | 13.2 |
96% | 9.1 | 16.4 | 17.5 | 16.7 |
Confining Pressure (kPa) | Principal Stress Difference (kPa) | |||
---|---|---|---|---|
4% | 8% | 10% | 12% | |
50 | 88.13 | 170.01 | 226.33 | 273.96 |
100 | 124.87 | 237.87 | 303.67 | 394.45 |
150 | 172.02 | 297.96 | 374.00 | 476.36 |
4% | 8% | 10% | 12% | ||||
---|---|---|---|---|---|---|---|
φ (°) | c (kPa) | φ (°) | c (kPa) | φ (°) | c (kPa) | φ (°) | c (kPa) |
17 | 18 | 24 | 41 | 27 | 78 | 30 | 91 |
Curing Age | a1-2 (MPa−1) | Es1-2 (MPa) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
4% | 8% | 10% | 12% | 15% | 4% | 8% | 10% | 12% | 15% | |
3 d | 0.586 | 0.645 | 0.675 | 0.770 | 0.714 | 0.586 | 0.645 | 0.675 | 0.770 | 0.714 |
7 d | 0.746 | 0.891 | 0.922 | 0.983 | 0.926 | 0.746 | 0.891 | 0.922 | 0.983 | 0.926 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, J.; Zhang, K.; Fan, X.; Zhang, Y.; Wei, G.; Yu, X.; Xu, W. Study on the Mechanical Properties of Modified Sludge Soil Based on an SM-C Modifier. Materials 2025, 18, 483. https://doi.org/10.3390/ma18030483
Nie J, Zhang K, Fan X, Zhang Y, Wei G, Yu X, Xu W. Study on the Mechanical Properties of Modified Sludge Soil Based on an SM-C Modifier. Materials. 2025; 18(3):483. https://doi.org/10.3390/ma18030483
Chicago/Turabian StyleNie, Jun, Kai Zhang, Xiangyang Fan, Yixuan Zhang, Guoxu Wei, Xiangyong Yu, and Wen Xu. 2025. "Study on the Mechanical Properties of Modified Sludge Soil Based on an SM-C Modifier" Materials 18, no. 3: 483. https://doi.org/10.3390/ma18030483
APA StyleNie, J., Zhang, K., Fan, X., Zhang, Y., Wei, G., Yu, X., & Xu, W. (2025). Study on the Mechanical Properties of Modified Sludge Soil Based on an SM-C Modifier. Materials, 18(3), 483. https://doi.org/10.3390/ma18030483