Advances in Rock and Mineral Materials
1. Introduction
2. An Overview of the Published Articles
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
List of Contributions
- Belmonte, L.J.; Ottosen, L.M.; Kirkelund, G.M. Use of a Glaciogene Marine Clay (Ilulissat, Greenland) in a Pilot Production of Red Bricks. Materials 2024, 17, 4365. https://doi.org/10.3390/ma17174365.
- Mannu, A.; Castia, S.; Petretto, G.; Garroni, S.; Castiglione, F.; Mele, A. Exploring the Structure–Activity Relationship of Bentonites for Enhanced Refinement of Recycled Vegetable Oil. Materials 2025, 18, 1059. https://doi.org/10.3390/ma18051059.
- Pavlović, J.; Hrenović, J.; Povrenović, D.; Rajić, N. Advances in the Applications of Clinoptilolite-Rich Tuffs. Materials 2024, 17, 1306. https://doi.org/10.3390/ma17061306.
- Fidanchevski, E.; Šter, K.; Mrak, M.; Rajacic, M.; Koszo, B.D.; Ipavec, A.; Teran, K.; Žibret, G.; Jovanov, V.; Aluloska, N.S.; et al. Characterization of Al-Containing Industrial Residues in the ESEE Region Supporting Circular Economy and the EU Green Deal. Materials 2024, 17, 6245. https://doi.org/10.3390/ma17246245.
- Tominc, S.; Ducman, V.; Wisniewski, W.; Luukkonen, T.; Kirkelund, G.M.; Ottosen, L.M. Recovery of Phosphorus and Metals from the Ash of Sewage Sludge, Municipal Solid Waste, or Wood Biomass: A Review and Proposals for Further Use. Materials 2023, 16, 6948. https://doi.org/10.3390/ma16216948.
- Iliyas, S.; Idris, A.; Umar, I.H.; Lin, H.; Muhammad, A.; Xie, L. Experiment and Analysis of Variance for Stabilizing Fine-Grained Soils with Cement and Sawdust Ash as Liner Materials. Materials 2024, 17, 2397. https://doi.org/10.3390/ma17102397.
- Frías, M.; Moreno De Los Reyes, A.M.; Villar-Cociña, E.; García, R.; Vigil De La Villa, R.; Vasić, M.V. New Eco-Cements Made with Marabou Weed Biomass Ash. Materials 2024, 17, 5012. https://doi.org/10.3390/ma17205012.
- Kryvenko, P.; Rudenko, I.; Konstantynovskyi, O.; Gelevera, O. Design, Characterization, and Incorporation of the Alkaline Aluminosilicate Binder in Temperature-Insulating Composites. Materials 2024, 17, 664. https://doi.org/10.3390/ma17030664.
- Alomari, E.; Ng, K.; Khatri, L. An Expanded Wing Crack Model for Fracture and Mechanical Behavior of Sandstone Under Triaxial Compression. Materials 2024, 17, 5973. https://doi.org/10.3390/ma17235973.
- West, I.; Walton, G.; Sinha, S. Evaluating the Accuracy of Bonded Block Models for Prediction of Rockmass Analog Mechanical Behavior. Materials 2023, 17, 88. https://doi.org/10.3390/ma17010088.
- Ma, C.; Cámara, F.; Bindi, L.; Toledo, V.; Griffin, W.L. New Minerals from Inclusions in Corundum Xenocrysts from Mt. Carmel, Israel: Magnéliite, Ziroite, Sassite, Mizraite-(Ce) and Yeite. Materials 2023, 16, 7578. https://doi.org/10.3390/ma16247578.
References
- Ghafoor, S.; Shooshtarian, S.; Udawatta, N.; Gurmu, A.; Karunasena, G.; Maqsood, T. Cost factors affecting the utilisation of secondary materials in the construction sector: A systematic literature review. Resour. Conserv. Recycl. Adv. 2024, 23, 200230. [Google Scholar] [CrossRef]
- Remeikienė, R.; Gasparėnienė, L.; Matulienė, S.; Szarucki, M. Secondary Raw Materials in the Circular Economy: A Multi-Perspective Study; Ksiegarnia Akademicka Publishing: Kraków, Poland, 2024. [Google Scholar] [CrossRef]
- Lundaev, V.; Solomon, A.A.; Le, T.; Lohrmann, A.; Breyer, C. Review of critical materials for the energy transition, an analysis of global resources and production databases and the state of material circularity. Miner. Eng. 2023, 203, 108282. [Google Scholar] [CrossRef]
- Božič, M.; Žibret, L.; Kvočka, D.; Pranjić, A.M.; Gregorc, B.; Ducman, V. Drava river sediment in clay brick production: Characterization, properties, and environmental performance. J. Build. Eng. 2023, 71, 106470. [Google Scholar] [CrossRef]
- Ottosen, L.M.; Bertelsen, I.M.G.; Jensen, P.E.; Kirkelund, G.M. Sewage sludge ash as resource for phosphorous and material for clay brick manufacturing. Constr. Build. Mater. 2020, 249, 118684. [Google Scholar] [CrossRef]
- Czerwinski, F. Critical Minerals for Zero-Emission Transportation. Materials 2022, 15, 5539. [Google Scholar] [CrossRef]
- Kriven, W.M.; Leonelli, C.; Provis, J.L.; Boccaccini, A.R.; Attwell, C.; Ducman, V.S.; Ferone, C.; Rossignol, S.; Luukkonen, T.; Van Deventer, J.S.J.; et al. Why geopolymers and alkali-activated materials are key components of a sustainable world: A perspective contribution. J. Am. Ceram. Soc. 2024, 107, 5159–5177. [Google Scholar] [CrossRef]
- González, I.; Galán, E.; Miras, A.; Vázquez, M.A. CO2 emissions derived from raw materials used in brick factories. Applications to Andalusia (Southern Spain). Appl. Clay Sci. 2011, 52, 193–198. [Google Scholar] [CrossRef]
- Brumaud, C.; Du, Y.; Ardant, D.; Habert, G. Earth, the new liquid stone: Development and perspectives. Mater. Today Commun. 2024, 39, 108959. [Google Scholar] [CrossRef]
- Lovec, V.; Jovanovic-Popovic, M.; Zivkovic, B. The thermal behavior of rammed earth wall in traditional house in Vojvodina: Thermal mass as a key element for thermal comfort. Therm. Sci. 2018, 22, 1143–1155. [Google Scholar] [CrossRef]
- Oti, J.E.; Kinuthia, J.M. Stabilised unfired clay bricks for environmental and sustainable use. Appl. Clay Sci. 2012, 58, 52–59. [Google Scholar] [CrossRef]
- Muheise-Araalia, D.; Pavia, S. Properties of unfired, illitic-clay bricks for sustainable construction. Constr. Build. Mater. 2021, 268, 121118. [Google Scholar] [CrossRef]
- Mannu, A.; Di Pietro, M.E.; Petretto, G.L.; Taleb, Z.; Serouri, A.; Taleb, S.; Sacchetti, A.; Mele, A. Recycling of used vegetable oils by powder adsorption. Waste Manag. Res. 2023, 41, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Huang, L.; Su, C.; Yan, J.; Chen, Z.; Li, M.; Du, M.; Zhang, H. Application of clay minerals as adsorbents for removing heavy metals from the environment. Green Smart Min. Eng. 2024, 1, 249–261. [Google Scholar] [CrossRef]
- Colella, C.; Gennaro, M.D.; Aiello, R. Use of Zeolitic Tuff in the Building Industry. Rev. Miner. Geochem. 2001, 45, 551–587. [Google Scholar] [CrossRef]
- Margeta, K.; Stefanović, Š.C.; Kaučič, V.; Logar, N.Z. The potential of clinoptilolite-rich tuffs from Croatia and Serbia for the reduction of toxic concentrations of cations and anions in aqueous solutions. Appl. Clay Sci. 2015, 116–117, 111–119. [Google Scholar] [CrossRef]
- Gartner, E.; Sui, T. Alternative cement clinkers. Cem. Concr. Res. 2018, 114, 27–39. [Google Scholar] [CrossRef]
- Žibret, L.; Ipavec, A.; Dolenec, S. Microstructural characteristics of belite–sulfoaluminate cement clinkers with bottom ash. Constr. Build. Mater. 2022, 321, 126289. [Google Scholar] [CrossRef]
- Bullerjahn, F.; Schmitt, D.; Ben Haha, M. Effect of raw mix design and of clinkering process on the formation and mineralogical composition of (ternesite) belite calcium sulphoaluminate ferrite clinker. Cem. Concr. Res. 2014, 59, 87–95. [Google Scholar] [CrossRef]
- Žibret, G.; Teran, K.; Žibret, L.; Šter, K.; Dolenec, S. Building of the Al-containing Secondary Raw Materials Registry for the Production of Low CO2 Mineral Binders in South-Eastern European Region. Sustainability 2021, 13, 1535. [Google Scholar] [CrossRef]
- Carević, I.; Serdar, M.; Štirmer, N.; Ukrainczyk, N. Preliminary screening of wood biomass ashes for partial resources replacements in cementitious materials. J. Clean. Prod. 2019, 229, 1045–1064. [Google Scholar] [CrossRef]
- Bernal, S.A.; Rodríguez, E.D.; Kirchheim, A.P.; Provis, J.L. Management and valorisation of wastes through use in producing alkali-activated cement materials: Wastes producing alkali-activated cement materials. J. Chem. Technol. Biotechnol. 2016, 91, 2365–2388. [Google Scholar] [CrossRef]
- Adesanya, E.; Dabbebi, R.; Rößler, C.; Pavlin, M.; Li, Z.; Luukkonen, T.; Yliniemi, J.; Illikainen, M. Analysis of alkali-activated mineral wool-slag binders: Evaluating the differences between one-part and two-part variations. J. Mater. Cycles Waste Manag. 2024, 26, 1001–1011. [Google Scholar] [CrossRef]
- Bílek, V.; Novotný, R.; Koplík, J.; Kadlec, M.; Kalina, L. Philosophy of rational mixture proportioning of alkali-activated materials validated by the hydration kinetics of alkali-activated slag and its microstructure. Cem. Concr. Res. 2023, 168, 107139. [Google Scholar] [CrossRef]
- Kryvenko, P.; Rudenko, I.; Kovalchuk, O.; Gelevera, O.; Konstantynovskyi, O. Influence of Dosage and Modulus on Soluble Sodium Silicate for Early Strength Development of Alkali-Activated Slag Cements. Minerals 2023, 13, 1164. [Google Scholar] [CrossRef]
- Chen, B.; Ye, G. Enhancing the reaction of municipal solid waste incineration (MSWI) bottom ash in blast furnace slag-based alkali-activated blends: A novel strategy and underlying mechanism. Cem. Concr. Compos. 2025, 160, 106056. [Google Scholar] [CrossRef]
- Chen, B.; Perumal, P.; Liu, C.; Chen, Y.; Chang, C.; Pavlin, M.; Kvočka, D.; Ducman, V.; Luukkonen, T.; Illikainen, M.; et al. Municipal solid waste incineration (MSWI) bottom ash-blended cementitious materials: Performance, challenges, and potential solutions. Crit. Rev. Environ. Sci. Technol. 2025, 55, 1506–1533. [Google Scholar] [CrossRef]
- Lima, A.T.; Ottosen, L. Recovering rare earth elements from contaminated soils: Critical overview of current remediation technologies. Chemosphere 2021, 265, 129163. [Google Scholar] [CrossRef]
- Ottosen, L.M.; Kirkelund, G.M.; Jensen, P.E. Extracting phosphorous from incinerated sewage sludge ash rich in iron or aluminum. Chemosphere 2013, 91, 963–969. [Google Scholar] [CrossRef]
- Wen, Y.; Hu, L.; Boxleiter, A.; Li, D.; Tang, Y. Rare Earth Elements Recovery and Waste Management of Municipal Solid Waste Incineration Ash. ACS Sustain. Resour. Manag. 2024, 1, 17–27. [Google Scholar] [CrossRef]
- Wang, N.; Bai, Y.; Guo, Z.; Fan, Y.; Meng, F. Synergies between the circular economy and carbon emission reduction. Sci. Total Environ. 2024, 951, 175603. [Google Scholar] [CrossRef]
- Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar] [CrossRef]
- Belmonte, L.J.; Ottosen, L.M.; Kirkelund, G.M.; Jensen, P.E.; Vestbø, A.P. Screening of heavy metal containing waste types for use as raw material in Arctic clay-based bricks. Environ. Sci. Pollut. Res. 2018, 25, 32831–32843. [Google Scholar] [CrossRef] [PubMed]
- Belmonte, L.J.; Ottosen, L.M.; Kirkelund, G.M. Use of a Glaciogene Marine Clay (Ilulissat, Greenland) in a Pilot Production of Red Bricks. Materials 2024, 17, 4365. [Google Scholar] [CrossRef] [PubMed]
- Mannu, A.; Castia, S.; Petretto, G.; Garroni, S.; Castiglione, F.; Mele, A. Exploring the Structure–Activity Relationship of Bentonites for Enhanced Refinement of Recycled Vegetable Oil. Materials 2025, 18, 1059. [Google Scholar] [CrossRef]
- Shi, B.; Guo, X.; Liu, H.; Jiang, K.; Liu, L.; Yan, N.; Farag, M.A.; Liu, L. Dissecting Maillard reaction production in fried foods: Formation mechanisms, sensory characteristic attribution, control strategy, and gut homeostasis regulation. Food Chem. 2024, 438, 137994. [Google Scholar] [CrossRef]
- Kuek, S.L.; Ahmad Tarmizi, A.H.; Abd Razak, R.A.; Jinap, S.; Norliza, S.; Sanny, M. Contribution of lipid towards acrylamide formation during intermittent frying of French fries. Food Control 2020, 118, 107430. [Google Scholar] [CrossRef]
- Pavlović, J.; Hrenović, J.; Povrenović, D.; Rajić, N. Advances in the Applications of Clinoptilolite-Rich Tuffs. Materials 2024, 17, 1306. [Google Scholar] [CrossRef]
- Dziedzicka, A.; Sulikowski, B.; Ruggiero-Mikołajczyk, M. Catalytic and physicochemical properties of modified natural clinoptilolite. Catal. Today 2016, 259, 50–58. [Google Scholar] [CrossRef]
- Fidanchevski, E.; Šter, K.; Mrak, M.; Rajacic, M.; Koszo, B.D.; Ipavec, A.; Teran, K.; Žibret, G.; Jovanov, V.; Aluloska, N.S.; et al. Characterization of Al-Containing Industrial Residues in the ESEE Region Supporting Circular Economy and the EU Green Deal. Materials 2024, 17, 6245. [Google Scholar] [CrossRef]
- Tominc, S.; Ducman, V.; Wisniewski, W.; Luukkonen, T.; Kirkelund, G.M.; Ottosen, L.M. Recovery of Phosphorus and Metals from the Ash of Sewage Sludge, Municipal Solid Waste, or Wood Biomass: A Review and Proposals for Further Use. Materials 2023, 16, 6948. [Google Scholar] [CrossRef]
- Iliyas, S.; Idris, A.; Umar, I.H.; Lin, H.; Muhammad, A.; Xie, L. Experiment and Analysis of Variance for Stabilizing Fine-Grained Soils with Cement and Sawdust Ash as Liner Materials. Materials 2024, 17, 2397. [Google Scholar] [CrossRef]
- Frías, M.; Moreno De Los Reyes, A.M.; Villar-Cociña, E.; García, R.; Vigil De La Villa, R.; Vasić, M.V. New Eco-Cements Made with Marabou Weed Biomass Ash. Materials 2024, 17, 5012. [Google Scholar] [CrossRef] [PubMed]
- Yagüe, S.; González Gaya, C.; Rosales Prieto, V.; Sánchez Lite, A. Sustainable Ecocements: Chemical and Morphological Analysis of Granite Sawdust Waste as Pozzolan Material. Materials 2020, 13, 4941. [Google Scholar] [CrossRef] [PubMed]
- Kryvenko, P.; Rudenko, I.; Konstantynovskyi, O.; Gelevera, O. Design, Characterization, and Incorporation of the Alkaline Aluminosilicate Binder in Temperature-Insulating Composites. Materials 2024, 17, 664. [Google Scholar] [CrossRef] [PubMed]
- Alomari, E.; Ng, K.; Khatri, L. An Expanded Wing Crack Model for Fracture and Mechanical Behavior of Sandstone Under Triaxial Compression. Materials 2024, 17, 5973. [Google Scholar] [CrossRef]
- Ashby, M.F.; Hallam (Née Cooksley), S.D. The failure of brittle solids containing small cracks under compressive stress states. Acta Metall. 1986, 34, 497–510. [Google Scholar] [CrossRef]
- West, I.; Walton, G.; Sinha, S. Evaluating the Accuracy of Bonded Block Models for Prediction of Rockmass Analog Mechanical Behavior. Materials 2023, 17, 88. [Google Scholar] [CrossRef]
- Griffin, W.L.; Huang, J.X.; Thomassot, E.; Gain, S.E.M.; Toledo, V.; O’Reilly, S.Y. Super-reducing conditions in ancient and modern volcanic systems: Sources and behaviour of carbon-rich fluids in the lithospheric mantle. Mineral. Petrol. 2018, 112, 101–114. [Google Scholar] [CrossRef]
- Ma, C.; Cámara, F.; Bindi, L.; Toledo, V.; Griffin, W.L. New Minerals from Inclusions in Corundum Xenocrysts from Mt. Carmel, Israel: Magnéliite, Ziroite, Sassite, Mizraite-(Ce) and Yeite. Materials 2023, 16, 7578. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žibret, G.; Ducman, V.; Žibret, L. Advances in Rock and Mineral Materials. Materials 2025, 18, 5576. https://doi.org/10.3390/ma18245576
Žibret G, Ducman V, Žibret L. Advances in Rock and Mineral Materials. Materials. 2025; 18(24):5576. https://doi.org/10.3390/ma18245576
Chicago/Turabian StyleŽibret, Gorazd, Vilma Ducman, and Lea Žibret. 2025. "Advances in Rock and Mineral Materials" Materials 18, no. 24: 5576. https://doi.org/10.3390/ma18245576
APA StyleŽibret, G., Ducman, V., & Žibret, L. (2025). Advances in Rock and Mineral Materials. Materials, 18(24), 5576. https://doi.org/10.3390/ma18245576
