Resolving Steam Turbine Casing Thermal Management Challenges with a Dual Attentive Bi-GRU Soft Sensor for Transient Operation
Abstract
1. Introduction
1.1. Online Steam Turbine Stress Control
- HP inner casing: −1.64 °C/min to +3.28 °C/min;
- IP inner casing: −1.35 °C/min to +2.70 °C/min.
1.2. Soft Sensors
- Development of a dual-model architecture ( and ) using Bi-GRUs with Attention Mechanism, tailored to handle the distinct dynamics of shutdown and active regimes, addressing thermal hysteresis in temperature prediction.
- Implementation of a data partitioning strategy based on operational regimes, ensuring data continuity for robust training and evaluation across diverse operating conditions.
- Optimization of the model using Hyperband tuning, achieving a simplified yet effective architecture with a L of 30 time steps, validated by a lowest MSE of 2.97 °C on the test set.
- Demonstration of superior performance over traditional machine learning and single-model deep learning approaches, with practical implications for real-time soft sensing in power generation systems.
2. Data and Data Preprocessing
2.1. Description of Data
2.2. Data Preprocessing
3. Methods
3.1. Dual Model Configuration
3.2. Temporal Sequence Preparation
3.3. Neural Network Architecture
3.3.1. Bidirectional Recurrent Layer
3.3.2. Attention Mechanism
3.3.3. Output Layer
3.4. Model Optimization
3.5. Comparison with Baseline Models
3.6. Evaluation and Training
- Early stopping: Training halts if validation loss does not improve for a specified number of epochs. The model is restored from the best epoch.
- Learning rate scheduling: The learning rate at epoch t is reduced when validation loss plateaus:where is the initial rate, is the decay factor, and p is the patience.
- Dropout: Deactivates a fraction of units during training to reduce overfitting:where is the unit output, and is a binary mask.
- Momentum: Stabilizes updates using a moving average of gradients:where is velocity, is the momentum coefficient, and is the learning rate.
4. Results and Discussion
4.1. Model Performance Analysis
4.2. Prediction Time Analysis
4.3. Static Models Performance with Extended Feature Sets
4.4. Discussion and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fortuna, L.; Graziani, S.; Rizzo, A.; Xibilia, M.G. Soft Sensors for Monitoring and Control of Industrial Processes, 1st ed.; Springer: London, UK, 2007. [Google Scholar]
- Wallscheid, O. Thermal Monitoring of Electric Motors: State-of-the-Art Review and Future Challenges. IEEE Open J. Ind. Appl. 2021, 2, 204–223. [Google Scholar] [CrossRef]
- Jia, X.D.; Zhou, Y.; Wang, Y.N. Deformation Behavior and Constitutive Model of 34CrNi3Mo during Thermo-Mechanical Deformation Process. Materials 2022, 15, 5220. [Google Scholar] [CrossRef] [PubMed]
- Dominiczak, K.; Rządkowski, R.; Radulski, W.; Szczepanik, R. Online Prediction of Temperature and Stress in Steam Turbine Components Using Neural Networks. J. Eng. Gas Turbines Power 2015, 138, 052606. [Google Scholar] [CrossRef]
- Bzymek, G.; Bryk, M.; Kruk-Gotzman, S.; Ziółkowski, P.J. Computational Fluid Dynamics Study of Erosion on 900 MW Steam Turbine ND-45 Blades Using 3D Scanning. Materials 2024, 17, 4884. [Google Scholar] [CrossRef] [PubMed]
- European Environment Agency. Greenhouse Gas Emission Trends and Projections in Europe 2024. 2024. Available online: https://www.eea.europa.eu/en/analysis/publications/trends-and-projections-in-europe-2024 (accessed on 31 October 2024).
- European Commission. Energy Strategy. 2025. Available online: https://ec.europa.eu/energy/topics/energy-strategy_en (accessed on 28 May 2025).
- Sun, C.; Shi, C.; Zhu, Z.; Lin, H.; Li, Z.; Du, F.; Cao, Z.; Lu, P.; Liu, L. Overburden failure characteristics and fracture evolution rule under repeated mining with multiple key strata control. Sci. Rep. 2025, 15, 28029. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Huan, H.; Lin, H.; Li, Z.; Du, F.; Cao, Z.; Fan, X.; Ren, H. Determination method of rational position for working face entries in coordinated mining of section coal pillars and lower sub-layer. Sci. Rep. 2025, 15, 29440. [Google Scholar] [CrossRef] [PubMed]
- Opole Power Plant Operational Indicators System (POIS) 2022; Internal Report; Opole Power Plant: Opole, Poland, 2025; Own Materials, not Publicly Available.
- Gulen, S.C. (Ed.) Gas Turbine Combined Cycle Power Plants, 1st ed.; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Gelb, A. (Ed.) Applied Optimal Estimation; The MIT Press: Cambridge, MA, USA, 1974. [Google Scholar]
- Banaszkiewicz, M.; Dominiczak, K. A methodology for online rotor stress monitoring using equivalent Green’s function and steam temperature model. Trans. Inst. Fluid-Flow Mach. 2016, 133, 13–37. [Google Scholar]
- Banaszkiewicz, M.; Badur, J. Practical Methods for Online Calculation of Thermoelastic Stresses in Steam Turbine Components. In Selected Problems of Contemporary Thermomechanics; Winczek, J., Ed.; IntechOpen: Rijeka, Croatia, 2018; Chapter 4. [Google Scholar] [CrossRef]
- Bao, G.; Liu, X.; Zou, B.; Yang, K.; Zhao, J.; Zhang, L.; Chen, M.; Qiao, Y.; Wang, W.; Tan, R.; et al. Collaborative framework of Transformer and LSTM for enhanced state-of-charge estimation in lithium-ion batteries. Energy 2025, 322, 135548. [Google Scholar] [CrossRef]
- Li, P.; Luo, Y.; Xia, X.; Shi, W.; Zheng, J.; Liao, Z.; Gao, X.; Chang, R. Advancing photovoltaic panel temperature forecasting: A comparative study of numerical simulation and machine learning in two types of PV power plant. Renew. Energy 2024, 237, 121602. [Google Scholar] [CrossRef]
- Nayak, A.K.; Sharma, K.C.; Bhakar, R.; Tiwari, H. Probabilistic online learning framework for short-term wind power forecasting using ensemble bagging regression model. Energy Convers. Manag. 2025, 323, 119142. [Google Scholar] [CrossRef]
- Ibrahim, I.A.; Hossain, M. Short-term multivariate time series load data forecasting at low-voltage level using optimised deep-ensemble learning-based models. Energy Convers. Manag. 2023, 296, 117663. [Google Scholar] [CrossRef]
- Fadja, A.N.; Cota, G.; Bertasi, F.; Riguzzi, F.; Losi, E.; Manservigi, L.; Venturini, M.; Bechini, G. Machine Learning Approaches for the Prediction of Gas Turbine Transients. J. Comput. Sci. 2024, 20, 495–510. [Google Scholar] [CrossRef]
- Li, J.; Akilan, T. Global Attention-based Encoder-Decoder LSTM Model for Temperature Prediction of Permanent Magnet Synchronous Motors. arXiv 2022, arXiv:2208.00293. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, G.; Li, S.; Du, J.; Xu, D.; Li, Y. A novel soft sensor approach for industrial quality prediction based TCN with spatial and temporal attention. Chemom. Intell. Lab. Syst. 2024, 257, 105272. [Google Scholar] [CrossRef]
- Yao, X.; Zhu, H.; Wang, G.; Wu, Z.; Chu, W. Triple Attention-based deep convolutional recurrent network for soft sensors. Measurement 2022, 202, 111897. [Google Scholar] [CrossRef]
- Nielsen, A. Practical Time Series Analysis: Prediction with Statistics and Machine Learning; O’Reilly Media: Santa Rosa, CA, USA, 2019. [Google Scholar]
- Bergman, T.L.; Lavine, A.S.; Incropera, F.P.; DeWitt, D.P. Fundamentals of Heat and Mass Transfer, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Chollet, F. Deep Learning with Python, 2nd ed.; Manning: Shelter Island, NY, USA, 2021. [Google Scholar]
- Bertsimas, D.; Boussioux, L. Ensemble Modeling for Time Series Forecasting: An Adaptive Robust Optimization Approach. arXiv 2023, arXiv:2304.04308. [Google Scholar] [CrossRef]
- Oliveira, M.; Torgo, L. Ensembles for Time Series Forecasting. In Proceedings of the Sixth Asian Conference on Machine Learning, Nha Trang City, Vietnam, 26–28 November 2015; Volume 39, pp. 360–370. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]








| Startup Type | 2023 | 2024 |
|---|---|---|
| Cold Start | 15 | 21 |
| Warm Start | 8 | 15 |
| Hot Start | 2 | 3 |
| Total Startups | 25 | 39 |
| Power [MW] | IP Steam Temperature [°C] |
|---|---|
| 100 | 416 |
| 150 | 455 |
| 200 | 482 |
| 250 | 502 |
| 300 | 520 |
| 370 | 535 |
| Measurement | Variable | Min | Max | Resolution | Unit | Type |
|---|---|---|---|---|---|---|
| Electrical Power | 0 | 400 | 1 min | MW | Sensor | |
| Turbine Rotation | 0 | 3500 | 1 min | Sensor | ||
| Inner Casing Temperature (1) | 0 | 600 | 1 min | °C | Sensor | |
| Inner Casing Temperature (2) | 0 | 600 | 1 min | °C | Sensor | |
| Blade Temperature | 0 | 600 | 1 min | °C | Sensor | |
| IP Steam Pressure | 0 | 6 | 1 min | MPa | Sensor | |
| IP Steam Temperature | 0 | 300 | 1 min | °C | Sensor | |
| LP Steam Pressure (A) | 0 | 6 | 1 min | MPa | Sensor | |
| LP Steam Pressure (B) | 0 | 6 | 1 min | MPa | Sensor | |
| LP Steam Temperature | 0 | 300 | 1 min | °C | Sensor | |
| Live Steam Flow | 0 | 1600 | 1 min | t/h | Sensor | |
| Secondary Steam Flow 10 | −0.45 | 45.45 | 1 min | t/h | Sensor | |
| Secondary Steam Flow 20 | −0.5 | 50.5 | 1 min | t/h | Sensor | |
| Auxiliary Flow XW3 | 0 | 60 | 1 min | t/h | Sensor | |
| Auxiliary Flow XW4 | 0 | 60 | 1 min | t/h | Sensor | |
| Steam Header Flow | 0 | 120 | 1 min | t/h | Sensor | |
| Calculated IP Steam Flow | – | – | 1 min | t/h | Calculated | |
| IP Steam Temp Set Point | 350 | 600 | 1 min | °C | Setpoint | |
| Electrical Power Set Point | 0 | 400 | 1 min | MW | Setpoint |
| Feature | Absolute Values | First Differences | ||||
|---|---|---|---|---|---|---|
| All | Active | Shutdown | All | Active | Shutdown | |
| 0.991 | 0.984 | 0.975 | 0.263 | 0.317 | 0.028 | |
| 0.961 | 0.986 | 0.995 | 0.189 | 0.223 | 0.017 | |
| 0.829 | 0.647 | 0.149 | 0.149 | 0.168 | 0.019 | |
| 0.810 | 0.646 | 0.263 | 0.170 | 0.188 | 0.015 | |
| 0.832 | 0.727 | NaN | 0.176 | 0.193 | NaN | |
| 0.855 | 0.816 | 0.472 | 0.199 | 0.221 | 0.016 | |
| Model | Features |
|---|---|
| , shutdown, | |
| , shutdown, |
| Hp | Description | ||
|---|---|---|---|
| Number of GRU layers | 1xGRU | 1xGRU | |
| Number of GRU units | 64 | 32 | |
| Type of Attention Mechanism | dir_AM | simple_AM | |
| Initial learning rate | 0.01 | 0.001 | |
| Momentum coefficient | 0.8 | 0.8 | |
| Dropout rate | 0.0 | 0.0 | |
| regl2 | L2 regularization strength | 0.0 | 0.0 |
| LR reduction patience (epochs) | 20 | 10 | |
| Early stopping patience (epochs) | 80 | 80 | |
| Minimum loss improvement threshold | 0.1 | 0.01 |
| Model | Hyperparameters |
|---|---|
| RFR | Number of trees: 100, Min samples per leaf: 1, Out-of-bag score enabled, Max depth: 15, Max features: 0.5 |
| XGBoost | Learning rate: 0.01, Number of trees: 100, Max depth: 15, Subsample: 0.5, Column sample by tree: 0.5, L1 regularization: 10, L2 regularization: 10 |
| LSTM () | Number of nodes: 16, Initial learning rate: 0.001, Momentum: 0.5, Dropout: 0.2, L2 regularization: 0.0, Patience for LR scheduler: 10, Patience for early stopping: 20, Min delta: 0.01 |
| SA Bi-GRU () | Architecture: 1xGRU + simple_AM, Number of nodes: 64, Initial learning rate: 0.01, Momentum: 0.8, Dropout: 0.4, L2 regularization: 0.0, Patience for LR scheduler: 80, Patience for early stopping: 80, Min delta: 0.01 |
| Model | MSE | MSE Std | MAE | MAE Std | RMSE | RMSE | MAPE | MAPE Std | |
|---|---|---|---|---|---|---|---|---|---|
| RFR | 16.61 | — | 3.10 | — | 4.08 | — | 0.9990 | 0.89 | — |
| XGBoost | 14.38 | — | 3.12 | — | 3.79 | — | 0.9992 | 0.90 | — |
| LSTM | 10.34 | 2.44 | 2.31 | 0.31 | 3.19 | 0.39 | 0.9994 | 0.82 | 0.12 |
| SA Bi-GRU | 4.77 | 0.74 | 1.53 | 0.09 | 2.18 | 0.17 | 0.9997 | 0.57 | 0.06 |
| DA Bi-GRU | 2.97 | 0.88 | 1.07 | 0.17 | 1.71 | 0.25 | 0.9998 | 0.39 | 0.06 |
| Model | Train Time (h) | Train Std (h) | Predict Time (s) | Predict Std (s) | Number of Params |
|---|---|---|---|---|---|
| SA Bi-GRU | 2.36 | 0.76 | 7.59 | 3.20 | 28,290 |
| DA Bi-GRU | 1.95 | 0.41 | 5.45 | 1.23 | 28,418 |
| LSTM | 0.39 | 0.04 | 3.93 | 0.90 | 1553 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kruk-Gotzman, S.; Bzymek, G.; Kania, K. Resolving Steam Turbine Casing Thermal Management Challenges with a Dual Attentive Bi-GRU Soft Sensor for Transient Operation. Materials 2025, 18, 5213. https://doi.org/10.3390/ma18225213
Kruk-Gotzman S, Bzymek G, Kania K. Resolving Steam Turbine Casing Thermal Management Challenges with a Dual Attentive Bi-GRU Soft Sensor for Transient Operation. Materials. 2025; 18(22):5213. https://doi.org/10.3390/ma18225213
Chicago/Turabian StyleKruk-Gotzman, Sylwia, Grzegorz Bzymek, and Konrad Kania. 2025. "Resolving Steam Turbine Casing Thermal Management Challenges with a Dual Attentive Bi-GRU Soft Sensor for Transient Operation" Materials 18, no. 22: 5213. https://doi.org/10.3390/ma18225213
APA StyleKruk-Gotzman, S., Bzymek, G., & Kania, K. (2025). Resolving Steam Turbine Casing Thermal Management Challenges with a Dual Attentive Bi-GRU Soft Sensor for Transient Operation. Materials, 18(22), 5213. https://doi.org/10.3390/ma18225213

