Poly(glycerol)-Functionalized Gadolinium Tungstate Nanoflakes Loaded with Chlorin e6: Photodynamic Efficacy and Radiosensitization Potential for Multimodal Cancer Therapy
Abstract
1. Introduction
2. Experimental Section
2.1. Reagents
2.2. Characterizations
2.3. Preparation Methods of BM-GW Nfs
2.4. Synthesis of PG-GW
2.5. ROS Assay
2.6. Physical Dose Enhancement Calculations
2.7. Loading Ce6 onto PG-GW
2.8. The Loading Capacity of Ce6
2.9. Decomposition Rate Constant Calculation
2.10. Phototoxicity of PG-GW/Ce6
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, L.; Qin, J.; Song, C.; Yin, J.; Wu, R.; Chen, H.; Dong, Y.; Wang, N.; Chen, L.; Hong, B.; et al. 157Gd-DOTA-PSMA as Theranostic Bio-Gadolinium Agent for Prostate Cancer Targeted Gadolinium Neutron Capture Therapy. J. Cancer Res. Clin. Oncol. 2025, 151, 93. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.W.; Xu, W.; Kim, S.J.; Baeck, J.S.; Chang, Y.; Bae, J.E.; Chae, K.S.; Park, J.A.; Kim, T.J.; Lee, G.H. Potential Dual Imaging Nanoparticle: Gd2O3 Nanoparticle. Sci. Rep. 2015, 5, 8549. [Google Scholar] [CrossRef]
- Du, Y.; Sun, H.; Lux, F.; Xie, Y.; Du, L.; Xu, C.; Zhang, H.; He, N.; Wang, J.; Liu, Y.; et al. Radiosensitization Effect of AGuIX, a Gadolinium-Based Nanoparticle, in Nonsmall Cell Lung Cancer. ACS Appl. Mater. Interfaces 2020, 12, 56874–56885. [Google Scholar] [CrossRef]
- Luchette, M.; Korideck, H.; Makrigiorgos, M.; Tillement, O.; Berbeco, R. Radiation Dose Enhancement of Gadolinium-Based AGuIX Nanoparticles on HeLa Cells. Nanomed. NBM 2014, 10, 1751–1755. [Google Scholar] [CrossRef]
- Ho, S.L.; Yue, H.; Tegafaw, T.; Ahmad, M.Y.; Liu, S.; Nam, S.-W.; Chang, Y.; Lee, G.H. Gadolinium Neutron Capture Therapy (GdNCT) Agents from Molecular to Nano: Current Status and Perspectives. ACS Omega 2022, 7, 2533–2553. [Google Scholar] [CrossRef]
- Kimura, A.; Nakamura, S.; Iwamoto, O.; Iwamoto, N.; Harada, H.; Katabuchi, T.; Terada, K.; Hori, J.; Shibahara, Y.; Fujii, T. Neutron Capture and Total Cross-Section Measurements of 155Gd and 157Gd at ANNRI in J-PARC. EPJ Web Conf. 2020, 239, 01012. [Google Scholar] [CrossRef]
- Servant, A.; Jacobs, I.; Bussy, C.; Fabbro, C.; Da Ros, T.; Pach, E.; Ballesteros, B.; Prato, M.; Nicolay, K.; Kostarelos, K. Gadolinium-Functionalised Multi-Walled Carbon Nanotubes as a T1 Contrast Agent for MRI Cell Labelling and Tracking. Carbon 2016, 97, 126–133. [Google Scholar] [CrossRef]
- Roux, S.; Faure, A.-C.; Mandon, C.; Dufort, S.; Rivière, C.; Bridot, J.-L.; Mutelet, B.; Marquette, C.A.; Josserand, V.; Le Duc, G.; et al. Multifunctional Gadolinium Oxide Nanoparticles: Towards Image-Guided Therapy. Imaging Med. 2010, 2, 211–223. [Google Scholar] [CrossRef]
- Liu, G.; Chen, Y.; Jia, M.; Sun, Z.; Ding, B.; Shao, S.; Jiang, F.; Fu, Z.; Ma, P.; Lin, J. One-Pot Synthesis of SiO2-Coated Gd2(WO4)3:Yb3+/Ho3+ Nanoparticles for Simultaneous Multi-Imaging, Temperature Sensing and Tumor Inhibition. Dalton Trans. 2019, 48, 10537–10546. [Google Scholar] [CrossRef]
- Zou, Y.; Ito, S.; Yoshino, F.; Suzuki, Y.; Zhao, L.; Komatsu, N. Polyglycerol Grafting Shields Nanoparticles from Protein Corona Formation to Avoid Macrophage Uptake. ACS Nano 2020, 14, 7216–7226. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kang, H.G.; Xu, H.; Luo, H.; Suzuki, M.; Lan, Q.; Chen, X.; Komatsu, N.; Zhao, L. Tumor Eradication by Boron Neutron Capture Therapy with 10B-enriched Hexagonal Boron Nitride Nanoparticles Grafted with Poly(Glycerol). Adv. Mater. 2023, 35, 2301479. [Google Scholar] [CrossRef]
- Wang, Y.; Reina, G.; Kang, H.G.; Chen, X.; Zou, Y.; Ishikawa, Y.; Suzuki, M.; Komatsu, N. Polyglycerol Functionalized 10B Enriched Boron Carbide Nanoparticle as an Effective Bimodal Anticancer Nanosensitizer for Boron Neutron Capture and Photothermal Therapies. Small 2022, 18, e2204044. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Xu, Y.; Qin, H.; Abe, S.; Akasaka, T.; Chano, T.; Watari, F.; Kimura, T.; Komatsu, N.; Chen, X. Platinum on Nanodiamond: A Promising Prodrug Conjugated with Stealth Polyglycerol, Targeting Peptide and Acid-Responsive Antitumor Drug. Adv. Funct. Mater. 2014, 24, 5348–5357. [Google Scholar] [CrossRef]
- Zhao, L.; Chano, T.; Morikawa, S.; Saito, Y.; Shiino, A.; Shimizu, S.; Maeda, T.; Irie, T.; Aonuma, S.; Okabe, H.; et al. Hyperbranched Polyglycerol-Grafted Superparamagnetic Iron Oxide Nanoparticles: Synthesis, Characterization, Functionalization, Size Separation, Magnetic Properties, and Biological Applications. Adv. Funct. Mater. 2012, 22, 5107–5117. [Google Scholar] [CrossRef]
- Zhao, L.; Takimoto, T.; Kimura, T.; Komatsu, N. Polyglycerol Functionalization of ZnO Nanoparticles for Stable Hydrosol in Physiological Media. J. Indian Chem. Soc. 2011, 88, 1787–1790. [Google Scholar]
- Zhao, L.; Takimoto, T.; Ito, M.; Kitagawa, N.; Kimura, T.; Komatsu, N. Chromatographic Separation of Highly Soluble Diamond Nanoparticles Prepared by Polyglycerol Grafting. Angew. Chem. Int. Ed. 2011, 50, 1388–1392. [Google Scholar] [CrossRef]
- Stetefeld, J.; McKenna, S.A.; Patel, T.R. Dynamic Light Scattering: A Practical Guide and Applications in Biomedical Sciences. Biophys. Rev. 2016, 8, 409–427. [Google Scholar] [CrossRef]
- Periyasamy, S.; Vinoth Kumar, J.; Chen, S.-M.; Annamalai, Y.; Karthik, R.; Erumaipatty Rajagounder, N. Structural Insights on 2D Gadolinium Tungstate Nanoflake: A Promising Electrocatalyst for Sensor and Photocatalyst for the Degradation of Postharvest Fungicide (Carbendazim). ACS Appl. Mater. Interfaces 2019, 11, 37172–37183. [Google Scholar] [CrossRef]
- Gerken, L.R.H.; Beckers, C.; Brugger, B.A.; Kissling, V.M.; Gogos, A.; Wee, S.; Lukatskaya, M.R.; Schiefer, H.; Plasswilm, L.; Pruschy, M.; et al. Catalytically Active Ti-Based Nanomaterials for Hydroxyl Radical Mediated Clinical X-Ray Enhancement. Adv. Sci. 2024, 11, 2406198. [Google Scholar] [CrossRef]
- Roeske, J.C.; Nuñez, L.; Hoggarth, M.; Labay, E.; Weichselbaum, R.R. Characterization of the Theorectical Radiation Dose Enhancement from Nanoparticles. Technol. Cancer. Res. Treat. 2007, 6, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Hubbell, J.H.; Seltzer, S.M. Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest; National Institute of Standards and Technology (NIST): Gaithersburg, MD, USA, 1995. [Google Scholar]
- Gerken, L.R.H.; Gogos, A.; Starsich, F.H.L.; David, H.; Gerdes, M.E.; Schiefer, H.; Psoroulas, S.; Meer, D.; Plasswilm, L.; Weber, D.C.; et al. Catalytic Activity Imperative for Nanoparticle Dose Enhancement in Photon and Proton Therapy. Nat. Commun. 2022, 13, 3248. [Google Scholar] [CrossRef]
- Liu, G.; Qin, H.; Amano, T.; Murakami, T.; Komatsu, N. Direct Fabrication of the Graphene-Based Composite for Cancer Phototherapy through Graphite Exfoliation with a Photosensitizer. ACS Appl. Mater. Interfaces 2015, 7, 23402–23406. [Google Scholar] [CrossRef]
- Liu, G.; Zhao, P.; Liu, N.; Yoshino, F.; Qin, H.; Zou, Y.; Shi, S.; Amano, T.; Aguilar Cosme, J.R.; Nagano, Y.; et al. Photosensitizer and Anticancer Drug-Loaded 2D Nanosheet: Preparation, Stability and Anticancer Property. 2D Mater. 2019, 6, 045035. [Google Scholar] [CrossRef]
- Zhao, L.; Nakae, Y.; Qin, H.; Ito, T.; Kimura, T.; Kojima, H.; Chan, L.; Komatsu, N. Polyglycerol-Functionalized Nanodiamond as a Platform for Gene Delivery: Derivatization, Characterization, and Hybridization with DNA. Beilstein J. Org. Chem. 2014, 10, 707–713. [Google Scholar] [CrossRef]
- Akçay, K.; Sirkecioğlu, A.; Tatlıer, M.; Savaşçı, Ö.T.; Erdem-Şenatalar, A. Wet Ball Milling of Zeolite HY. J. Powder Technol. 2004, 142, 121–128. [Google Scholar] [CrossRef]
- Butterworth, K.T.; McMahon, S.J.; Currell, F.J.; Prise, K.M. Physical Basis and Biological Mechanisms of Gold Nanoparticle Radiosensitization. Nanoscale 2012, 4, 4830. [Google Scholar] [CrossRef] [PubMed]
- Howard, D.; Sebastian, S.; Le, Q.V.-C.; Thierry, B.; Kempson, I. Chemical Mechanisms of Nanoparticle Radiosensitization and Radioprotection: A Review of Structure-Function Relationships Influencing Reactive Oxygen Species. Int. J. Mol. Sci. 2020, 21, 579. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, M.; Sasaki, R.; Ogino, C.; Tanaka, T.; Morita, K.; Umetsu, M.; Ohara, S.; Tan, Z.; Nishimura, Y.; Akasaka, H.; et al. Titanium Peroxide Nanoparticles Enhanced Cytotoxic Effects of X-Ray Irradiation against Pancreatic Cancer Model through Reactive Oxygen Species Generation in Vitro and in Vivo. Radiat. Oncol. 2016, 11, 91. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Riediker, M. Detecting the Oxidative Reactivity of Nanoparticles: A New Protocol for Reducing Artifacts. J. Nanopart. Res. 2014, 16, 2493. [Google Scholar] [CrossRef]
- Verry, C.; Sancey, L.; Dufort, S.; Le Duc, G.; Mendoza, C.; Lux, F.; Grand, S.; Arnaud, J.; Quesada, J.L.; Villa, J.; et al. Treatment of Multiple Brain Metastases Using Gadolinium Nanoparticles and Radiotherapy: NANO-RAD, a Phase I Study Protocol. BMJ Open 2019, 9, e023591. [Google Scholar] [CrossRef]
- Seo, S.-J.; Han, S.-M.; Cho, J.-H.; Hyodo, K.; Zaboronok, A.; You, H.; Peach, K.; Hill, M.A.; Kim, J.-K. Enhanced Production of Reactive Oxygen Species by Gadolinium Oxide Nanoparticles under Core–Inner-Shell Excitation by Proton or Monochromatic X-Ray Irradiation: Implication of the Contribution from the Interatomic de-Excitation-Mediated Nanoradiator Effect to Dose Enhancement. Radiat. Environ. Biophys. 2015, 54, 423–431. [Google Scholar] [CrossRef]
- Israelachvili, J.N. Intermolecular and Surface Forces, 3rd ed.; Academic Press: London, UK, 2011. [Google Scholar]
- Nellissen, A.-C.; Xia, Y.; Hu, T.; Vandenwijngaerden, J.B.F.; Fron, E.; De Feyter, S.; Watanabe, K.; Taniguchi, T.; Mertens, S.F.L.; Van Der Auweraer, M. Concentration Dependence of the Adsorption of Metalfree Tetra(4-Carboxyphenyl) Porphyrin (TCPP) on Hexagonal Boron Nitride. Dyes Pigm. 2025, 237, 112695. [Google Scholar] [CrossRef]
- Korolkov, V.V.; Svatek, S.A.; Summerfield, A.; Kerfoot, J.; Yang, L.; Taniguchi, T.; Watanabe, K.; Champness, N.R.; Besley, N.A.; Beton, P.H. Van Der Waals-Induced Chromatic Shifts in Hydrogen-Bonded Two-Dimensional Porphyrin Arrays on Boron Nitride. ACS Nano 2015, 9, 10347–10355. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Saucier-Sawyer, J.K.; Hoimes, C.J.; Zhang, J.; Seo, Y.-E.; Andrejecsk, J.W.; Saltzman, W.M. The Effect of Hyperbranched Polyglycerol Coatings on Drug Delivery Using Degradable Polymer Nanoparticles. Biomaterials 2014, 35, 6595–6602. [Google Scholar] [CrossRef]
- Wang, L.; Yu, D.; Dai, R.; Fu, D.; Li, W.; Guo, Z.; Cui, C.; Xu, J.; Shen, S.; Ma, K. PEGylated Doxorubicin Cloaked Nano-Graphene Oxide for Dual-Responsive Photochemical Therapy. Int. J. Pharm. 2019, 557, 66–73. [Google Scholar] [CrossRef]
- Huang, P.; Xu, C.; Lin, J.; Wang, C.; Wang, X.; Zhang, C.; Zhou, X.; Guo, S.; Cui, D. Folic Acid-Conjugated Graphene Oxide Loaded with Photosensitizers for Targeting Photodynamic Therapy. Theranostics 2011, 1, 240–250. [Google Scholar] [CrossRef]
- Feng, Q.; Xu, J.; Zhuang, C.; Xiong, J.; Wang, H.; Xiao, K. Mitochondria-Targeting and Multiresponsive Nanoplatform Based on AIEgens for Synergistic Chemo-Photodynamic Therapy and Enhanced Immunotherapy. Biomacromolecules 2023, 24, 977–990. [Google Scholar] [CrossRef]
- Li, Y.; Han, W.; Gong, D.; Luo, T.; Fan, Y.; Mao, J.; Qin, W.; Lin, W. A Self-Assembled Nanophotosensitizer Targets Lysosomes and Induces Lysosomal Membrane Permeabilization to Enhance Photodynamic Therapy. Chem. Sci. 2023, 14, 5106. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, M.; Kang, H.G.; Zou, Y.; Takeuchi, H.; Matsuno, N.; Suzuki, M.; Komatsu, N. Conjugation of Phenylboronic Acid Moiety through Multistep Organic Transformations on Nanodiamond Surface for an Anticancer Nanodrug for Boron Neutron Capture Therapy. Bull. Chem. Soc. Jpn. 2021, 94, 2302–2312. [Google Scholar] [CrossRef]
- Johnson, D.E.; Ostrowski, P.; Jaumouillé, V.; Grinstein, S. The Position of Lysosomes within the Cell Determines Their Luminal pH. J. Cell Biol. 2016, 212, 677–692. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Q.; Cai, J.; Yang, Y.; Zhang, J.; Gao, Y.; Liu, S.; Li, K.; Shi, M.; Liu, Z.; et al. A Double-Chamber “Dandelion” Appearance Sequential Drug Delivery System for Synergistic Treatment of Malignant Tumors. Int. J. Nanomed. 2022, 17, 3821–3839. [Google Scholar] [CrossRef] [PubMed]
- Moan, J. On the Diffusion Length of Singlet Oxygen in Xells and Tissues. J. Photochem. Photobiol. B 1990, 6, 343–344. [Google Scholar] [CrossRef]
- Sokolov, V.S.; Batishchev, O.V.; Akimov, S.A.; Galimzyanov, T.R.; Konstantinova, A.N.; Malingriaux, E.; Gorbunova, Y.G.; Knyazev, D.G.; Pohl, P. Residence Time of Singlet Oxygen in Membranes. Sci. Rep. 2018, 8, 14000. [Google Scholar] [CrossRef]
- Simões, R.V.; Serganova, I.S.; Kruchevsky, N.; Leftin, A.; Shestov, A.A.; Thaler, H.T.; Sukenick, G.; Locasale, J.W.; Blasberg, R.G.; Koutcher, J.A.; et al. Metabolic Plasticity of Metastatic Breast Cancer Cells: Adaptation to Changes in the Microenvironment. Neoplasia 2015, 17, 671–684. [Google Scholar] [CrossRef]
- Stangl, S.; Gehrmann, M.; Dressel, R.; Alves, F.; Dullin, C.; Themelis, G.; Ntziachristos, V.; Staeblein, E.; Walch, A.; Winkelmann, I.; et al. In Vivo Imaging of CT26 Mouse Tumours by Using cmHsp70.1 Monoclonal Antibody. J. Cell. Mol. Med. 2011, 15, 874–887. [Google Scholar] [CrossRef]
- Tian, B.; Wang, C.; Zhang, S.; Feng, L.; Liu, Z.Q. Photothermally Enhanced Photodynamic Therapy Delivered by Nano-Graphene Oxide. ACS Nano 2011, 5, 7000. [Google Scholar] [CrossRef]
- Cho, Y.; Choi, Y. Graphene Oxide-Photosensitizer Conjugate as a Redox-Responsive Theranostic Agent. Chem. Commun. 2012, 48, 9912–9914. [Google Scholar] [CrossRef]
- Li, F.; Park, S.J.; Ling, D.; Park, W.; Han, J.Y.; Na, K.; Char, K. Hyaluronic Acid-Conjugated Graphene Oxide/Photosensitizer Nanohybrids for Cancer Targeted Photodynamic Therapy. J. Mater. Chem. B 2013, 1, 1678–1686. [Google Scholar] [CrossRef]
- Wang, C.; Cheng, L.; Liu, Y.; Wang, X.; Ma, X.; Deng, Z.; Li, Y.; Liu, Z. Imaging-Guided pH-Sensitive Photodynamic Therapy Using Charge Reversible Upconversion Nanoparticles under Near-Infrared Light. Adv. Funct. Mater. 2013, 23, 3077–3086. [Google Scholar] [CrossRef]
- Wang, C.; Tao, H.; Cheng, L.; Liu, Z. Near-Infrared Light Induced in Vivo Photodynamic Therapy of Cancer Based on Upconversion Nanoparticles. Biomaterials 2011, 32, 6145–6154. [Google Scholar] [CrossRef] [PubMed]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, H.G.; Gerken, L.R.H. Poly(glycerol)-Functionalized Gadolinium Tungstate Nanoflakes Loaded with Chlorin e6: Photodynamic Efficacy and Radiosensitization Potential for Multimodal Cancer Therapy. Materials 2025, 18, 5198. https://doi.org/10.3390/ma18225198
Kang HG, Gerken LRH. Poly(glycerol)-Functionalized Gadolinium Tungstate Nanoflakes Loaded with Chlorin e6: Photodynamic Efficacy and Radiosensitization Potential for Multimodal Cancer Therapy. Materials. 2025; 18(22):5198. https://doi.org/10.3390/ma18225198
Chicago/Turabian StyleKang, Heon Gyu, and Lukas R. H. Gerken. 2025. "Poly(glycerol)-Functionalized Gadolinium Tungstate Nanoflakes Loaded with Chlorin e6: Photodynamic Efficacy and Radiosensitization Potential for Multimodal Cancer Therapy" Materials 18, no. 22: 5198. https://doi.org/10.3390/ma18225198
APA StyleKang, H. G., & Gerken, L. R. H. (2025). Poly(glycerol)-Functionalized Gadolinium Tungstate Nanoflakes Loaded with Chlorin e6: Photodynamic Efficacy and Radiosensitization Potential for Multimodal Cancer Therapy. Materials, 18(22), 5198. https://doi.org/10.3390/ma18225198

