Metasurface Lossless-Regulation Mechanism of Dynamic Acoustic Mass for Low-Frequency Aerodynamic Noise Control
Abstract
1. Introduction
2. Aerodynamic Simulation Modeling of ENHR
2.1. Structure of ENHR
2.2. Modeling of Aerodynamic Simulation
3. Lossless Regulation Mechanism of Dynamic Acoustic Mass
4. Metasurface for Low-Frequency, Broadband Aerodynamic Noise Control
4.1. Multi-Cell Coupled ENHR Metasurface
4.2. Low-Frequency Broadband Aerodynamic Noise Reduction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, X.J.; Chen, Z.; Dong, B. The randomness and determinacy of wall pressure fluctuations in incompressible flow. Phys. Fluids 2024, 36, 085137. [Google Scholar] [CrossRef]
- Maryami, R.; Ali, S.A.S. Near-field pressure and wake velocity coherence of a circular cylinder. Phys. Fluids 2023, 35, 115140. [Google Scholar] [CrossRef]
- Cummings, A. The response of a resonator under a turbulent boundary layer to a high amplitude non-harmonic sound field. J. Sound Vib. 1987, 115, 321–328. [Google Scholar] [CrossRef]
- Anderson, J.S. Effect of an air-flow on a single side branch Helmholtz resonator in a circular duct. J. Sound Vib. 1977, 52, 423–431. [Google Scholar] [CrossRef]
- Iqbal, A.; Selamet, A. A two-dimensional computational study of the flow effect on the acoustic behaviour of Helmholtz resonators. Int. J. Veh. Vib. 2010, 6, 130–148. [Google Scholar] [CrossRef]
- Zheng, M.Y.; Chen, C.; Li, X.D. The influence of the grazing flow and sound incidence direction on the acoustic characteristics of double Helmholtz resonators. Appl. Acoust. 2023, 202, 109160. [Google Scholar] [CrossRef]
- Cao, J.L.; Huang, S.B.; Yu, X.H.; Li, Y. Acoustic attenuation of side-branched Helmholtz resonator with embedded apertures in grazing flow ducts. J. Phys. D Appl. Phys. 2024, 57, 205504. [Google Scholar] [CrossRef]
- Meng, Y.; Humbert, T.; Romero-Garcia, V.; Groby, J.P.; Gabard, G. On the monopolar and dipolar acoustic responses of a passive single point scatterer subjected to low-Mach-number grazing air flow. J. Sound Vibr. 2024, 578, 118356. [Google Scholar] [CrossRef]
- Panton, R.L. Effect of orifice geometry on Helmholtz resonator excitation by grazing flow. AIAA J. 1990, 28, 60–65. [Google Scholar] [CrossRef]
- Ji, C.Z.; Zhao, D. Two-dimensional lattice Boltzmann investigation of sound absorption of perforated orifices with different geometric shapes. Aerosp. Sci. Technol. 2014, 39, 40–47. [Google Scholar] [CrossRef]
- Zhao, D.; Ji, C.Z.; Yin, M. Experimental investigation of geometric shape effect of coupled Helmholtz resonators on aeroacoustics damping performances in presence of low grazing flow. Aerosp. Sci. Technol. 2022, 128, 107799. [Google Scholar] [CrossRef]
- Zhang, D.C.; Su, X.M.; Sun, Y.M.; Luo, Y.Q.; Sun, X.M.; Chen, C.Z. Performance study and improvement of space-folded metamaterial mufflerfor pipe under grazing flow. Appl. Acoust. 2024, 220, 109984. [Google Scholar] [CrossRef]
- Guan, D.; Zhao, D.; Ren, Z.X. Aeroacoustic Attenuation Performance of a Helmholtz Resonator with a Rigid Baffle Implemented in the Presence of a Grazing Flow. Int. J. Aerosp. Eng. 2020, 2020, 1916239. [Google Scholar] [CrossRef]
- Zhang, Z.G.; Zhao, D.; Li, J.W. Control of combustion instability with a tunable Helmholtz resonator. Aerosp. Sci. Technol. 2015, 41, 55–62. [Google Scholar] [CrossRef]
- Guzmán-Iñigo, J.; Ahmed, D.; Morgans, A.S. Sensitivity and optimisation of the acoustic response of short circular holes with turbulent bias flow. J. Sound Vibr. 2025, 618, 119322. [Google Scholar] [CrossRef]
- Li, M.; Wu, J.H.; Yuan, X.Y. Metasurface zero-impedance matching mechanism for aerodynamic noise reduction. J. Sound Vib. 2022, 536, 117147. [Google Scholar] [CrossRef]
- Li, M.; Wu, J.H.; Yuan, X.Y. Broadband suppression of aerodynamic pressure on the high-speed bluff body surface with periodic square-cavity acoustic metasurface. AIP Adv. 2021, 11, 105004. [Google Scholar] [CrossRef]
- Li, M.; Wu, J.H.; Yuan, X.Y. Wall suction & slip effect of spherical-grooved bionic metasurface for controlling the aerodynamic noise. Appl. Acoust. 2021, 171, 107537. [Google Scholar] [CrossRef]
- Lienhart, H.; Becker, S. Flow and turbulence structure in the wake of a simplified car model. SAE Trans. 2003, 112, 785–796. [Google Scholar]






| Cell | ai | bi | li | ni | di | hi | Hi | Hii | nii | dii | hii |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 59 | 60 | 63 | 1 | 4 | 44 | 45 | 2 | 49 | 3.5 | 2 |
| 2 | 59 | 58 | 62 | 1 | 5 | 44 | 45 | 2 | 35 | 3.9 | 2 |
| 3 | 57 | 56 | 59 | 1 | 4 | 44 | 45 | 2 | 25 | 4 | 2 |
| 4 | 54 | 54 | 56 | 1 | 4 | 44 | 45 | 2 | 35 | 4 | 2 |
| 5 | 57 | 56 | 59 | 1 | 4 | 44 | 45 | 2 | 25 | 4.5 | 2 |
| 6 | 57.5 | 57 | 60 | 1 | 5 | 44 | 45 | 2 | 25 | 5 | 2 |
| 7 | 60 | 60 | 63 | 1 | 6 | 44 | 45 | 2 | 15 | 5 | 2 |
| 8 | 58 | 58 | 60 | 1 | 7 | 44 | 45 | 2 | 15 | 7 | 2 |
| 9 | 48 | 48 | 50 | 1 | 7 | 44 | 45 | 2 | 12 | 7 | 2 |
| 10 | 39.5 | 39 | 43 | 1 | 7 | 44 | 45 | 2 | 12 | 7 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Wu, J. Metasurface Lossless-Regulation Mechanism of Dynamic Acoustic Mass for Low-Frequency Aerodynamic Noise Control. Materials 2025, 18, 5095. https://doi.org/10.3390/ma18225095
Li M, Wu J. Metasurface Lossless-Regulation Mechanism of Dynamic Acoustic Mass for Low-Frequency Aerodynamic Noise Control. Materials. 2025; 18(22):5095. https://doi.org/10.3390/ma18225095
Chicago/Turabian StyleLi, Min, and Jiuhui Wu. 2025. "Metasurface Lossless-Regulation Mechanism of Dynamic Acoustic Mass for Low-Frequency Aerodynamic Noise Control" Materials 18, no. 22: 5095. https://doi.org/10.3390/ma18225095
APA StyleLi, M., & Wu, J. (2025). Metasurface Lossless-Regulation Mechanism of Dynamic Acoustic Mass for Low-Frequency Aerodynamic Noise Control. Materials, 18(22), 5095. https://doi.org/10.3390/ma18225095
