Enhancing CO2 Reduction Performance on Cu-Based Catalysts: Modulating Electronic Properties and Molecular Configurations
Highlights
- Summarizes unique advantages and catalytic mechanisms of Cu-based catalysts.
- Systematically elaborates three tuning strategies for Cu-based catalysts.
- Identifies core challenges of Cu-based catalysts in CO2RR.
- Providing a theoretical framework for the rational design of Cu-based catalysts.
- Regulating Cu active site properties and intermediate adsorption behavior.
- Lays a foundation for advancing efficient CO2RR catalytic systems and practical application.
Abstract
1. Introduction
2. Electronic Structure Tuning
2.1. Electron-Donating/-Withdrawing Effect
2.2. Steric Hindrance Effect
3. Active Center Tuning
3.1. Single Atom Catalysts
3.2. Heterogeneous Synergy Effect
3.3. Polymer Modification
4. Surface Structure Tuning
4.1. Morphology Effect
4.2. Valence State Effect
4.3. Crystal Facet Effect
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, L.S.; Liu, H.; Mei, B.B.; Chen, J.; Cheng, Q.Q.; Ma, J.Y.; Yang, B.; Li, Q.; Yang, H. Cu supraparticles with enhanced mass transfer and abundant C-C coupling sites achieving ampere-level CO2-to-C2+ electrosynthesis. Nat. Commun. 2025, 16, 3421. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, X.J.; Yuan, Q.; Wei, Z.M.; Ding, J.; Chu, T.S.; Rong, C.; Zhang, Q.; Ye, Z.K.; Fu, Z.X.; et al. Elucidating the structure-stability relationship of Cu single-atom catalysts using operando surface-enhanced infrared absorption spectroscopy. Nat. Commun. 2023, 14, 8311. [Google Scholar] [CrossRef]
- Fu, J.W.; Liu, K.; Li, H.; Hu, J.H.; Liu, M. Bimetallic atomic site catalysts for CO2 reduction reactions: A Review. Environ. Chem. Lett. 2022, 20, 243–262. [Google Scholar] [CrossRef]
- Zhang, J.H.; Zhong, D.C.; Lu, T.B. Co (II)-based molecular complexes for photochemical CO2 reduction. Acta Phys. Chim. Sin. 2021, 37, 2008068. [Google Scholar]
- Zhai, P.L.; Xia, M.Y.; Wu, Y.Z.; Zhang, G.H.; Gao, J.F.; Zhang, B.; Cao, S.Y.; Zhang, Y.T.; Li, Z.W.; Fan, Z.Z.; et al. Engineering single-atomic ruthenium catalytic sites on defective Nickel-Iron layered double hydroxide for overall water splitting. Nat. Commun. 2021, 12, 4587. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.F.; Qu, Y.; Wang, T.; Chen, Y.J.; Wang, G.F.; Li, X.; Dong, J.C.; Chen, Q.Y.; Zhang, W.Y.; Zhang, Z.D.; et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 2020, 59, 10651–10657. [Google Scholar] [CrossRef]
- Kiendrebeogo, M.; Karimi Estahbanati, M.R.; Ouarda, Y.; Drogui, P.; Tyagi, R.D. Electrochemical degradation of nanoplastics in water: Analysis of the role of reactive oxygen species. Sci. Total Environ. 2022, 808, 151897. [Google Scholar] [CrossRef]
- Ma, X.S.; Fang, C.; Ding, M.; Zuo, Y.; Sun, X.Y.; Wang, S.X. Atomic-level elucidation of lattice-hydrogens in copper catalysts for selective CO2 electrochemical conversion toward C2 products. Angew. Chem. Int. Ed. 2025, 64, e202500191. [Google Scholar] [CrossRef]
- Hou, T.L.; Zhu, J.X.; Gu, H.F.; Li, X.Y.; Sun, Y.Q.; Hua, Z.; Shao, R.W.; Chen, C.; Hu, B.T.; Mai, L.Q.; et al. Switching CO2 electroreduction toward C2+ products and CH4 by regulating the dimerization and protonation in platinum/copper catalysts. Angew. Chem. Int. Ed. 2025, 64, e202424749. [Google Scholar] [CrossRef]
- Zhao, X.; Du, L.J.; You, B.; Sun, Y.J. Integrated design for electrocatalytic carbon dioxide reduction. Catal. Sci. Technol. 2020, 10, 2711–2720. [Google Scholar] [CrossRef]
- Hansen, H.A.; Varley, J.B.; Peterson, A.A.; Nørskov, J.K. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J. Phys. Chem. Lett. 2013, 4, 388–392. [Google Scholar] [CrossRef]
- Li, K.; Peng, B.S.; Peng, T.Y. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal. 2016, 6, 7485–7527. [Google Scholar] [CrossRef]
- Wang, W.; Wang, S.P.; Ma, X.B.; Gong, J.L. Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev. 2011, 40, 3703–3727. [Google Scholar] [CrossRef]
- Zhou, F.C.; Zhang, J.J.; Zhang, Y.F.; Wu, Y.; Wang, Y.; Luo, W. Palladium-Copper bimetallic catalysts for electroreduction of CO2 and nitrogenous species. Coord. Chem. Rev. 2024, 509, 215802. [Google Scholar] [CrossRef]
- Zhan, C.; Dattila, F.; Rettenmaier, C.; Bergmann, A.; Kühl, S.; García-Muelas, R.; López, N.; Cuenya, B.R. Revealing the CO coverage-driven C-C coupling mechanism for electrochemical CO2 reduction on Cu2O nanocubes via Operando Raman Spectroscopy. ACS Catal. 2021, 11, 7694–7701. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Xiao, J.P.; Peng, H.J.; Hong, X.; Chan, K.R.; Nørskov, J.K. Understanding trends in electrochemical carbon dioxide reduction rates. Nat. Commun. 2017, 8, 15438. [Google Scholar] [CrossRef] [PubMed]
- Wuttig, A.; Yaguchi, M.; Motobayashi, K.; Osawa, M.; Surendranath, Y. Inhibited Proton transfer enhances Au-catalyzed CO2-to-fuels selectivity. Proc. Natl. Acad. Sci. USA 2016, 113, E4585–E4593. [Google Scholar] [CrossRef]
- Varela, A.S.; Kroschel, M.; Leonard, N.D.; Ju, W.; Steinberg, J.; Bagger, A.; Roaameisl, J.; Strasser, P. pH effects on the selectivity of the electrocatalytic CO2 reduction on graphene-embedded Fe-N-C motifs: Bridging concepts between molecular homogeneous and solid-state heterogeneous catalysis. ACS Energy Lett. 2018, 3, 812–817. [Google Scholar] [CrossRef]
- Wang, D.D.; Chen, C.; Wang, S.Y. Defect engineering for advanced electrocatalytic conversion of nitrogen-containing molecules. Sci. China Chem. 2023, 66, 1052–1072. [Google Scholar] [CrossRef]
- Zhang, J.; Pham, T.H.M.; Gao, Z.X.; Li, M.; Ko, Y.D.; Lombardo, L.; Luo, W.; Züttel, A. Electrochemical CO2 reduction over copper phthalocyanine derived catalysts with enhanced selectivity for multicarbon products. ACS Catal. 2023, 13, 9326–9335. [Google Scholar] [CrossRef]
- Bagger, A.; Ju, W.; Varela, A.S.; Strasser, P.; Rossmeisl, J. Electrochemical CO2 reduction: A Classification Problem. ChemPhysChem 2017, 18, 3266–3273. [Google Scholar] [CrossRef]
- Gong, L.; Zhang, W.N.; Zhuang, Y.; Zhang, K.Y.; Zhao, Q.Y.; Xiao, D.D.; Liu, S.; Liu, Z.W.; Zhang, Y.Z. High-entropy metal sulfide nanoparticles promise high-performance carbon dioxide reduction. ACS Appl. Mater. Interfaces 2024, 16, 66211–66218. [Google Scholar] [CrossRef]
- Hori, Y.; Kikuchi, K.; Suzuki, S. Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogen-carbonate solution. Chem Lett. 1985, 14, 1695–1698. [Google Scholar] [CrossRef]
- Xiao, C.L.; Zhang, J. Architectural design for enhanced C2 product selectivity in electrochemical CO2 reduction using Cu-based catalysts: A Review. ACS Nano 2021, 15, 7975–8000. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.H.M.; Zhang, J.; Li, M.; Shen, T.H.; Ko, Y.D.; Tileli, V.; Luo, W.; Züttel, A. Enhanced electrocatalytic CO2 reduction to C2+ products by adjusting the local reaction environment with polymer binders. Adv. Energy Mater. 2022, 12, 2103663. [Google Scholar] [CrossRef]
- Birdja, Y.Y.; Pérez-Gallent, E.; Figueiredo, M.C.; Göttle, A.J.; Calle-Vallejo, F.; Koper, M.T.M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745. [Google Scholar] [CrossRef]
- Xie, Z.Z.; Wang, Q.S.; Yang, H.; Feng, J.; Chen, J.; Song, S.Q.; Meng, C.G.; Wang, K.; Tong, Y.X. Surface facets reconstruction in copper-based materials for enhanced electrochemical CO2 reduction. Small 2024, 20, 2401530. [Google Scholar] [CrossRef]
- Cheng, H.Y.; Wu, X.M.; Feng, M.M.; Li, X.C.; Lei, G.P.; Fan, Z.H.; Pan, D.W.; Cui, F.J.; He, G.H. Atomically dispersed Ni/Cu dual sites for boosting the CO2 reduction reaction. ACS Catal. 2021, 11, 12673–12681. [Google Scholar] [CrossRef]
- Chen, D.; Chu, B.X.; Li, F.Y.; Zheng, Y.T.; Lu, Y.; Shao, B.; Li, L.; Huang, N.Y.; Xu, Q. Synergistic catalysis by Cu single atoms and atomically Cu-doped Au nanoparticles in a metal-organic framework for photocatalytic CO2 reduction to C2H6. J. Am. Chem. Soc. 2025, 147, 22705–22713. [Google Scholar] [CrossRef]
- Wakerley, D.; Lamaison, S.; Ozanam, F.; Menguy, N.; Mercier, D.; Marcus, P.; Fontecave, M.; Mougel, V. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat. Mater. 2019, 18, 1222–1227. [Google Scholar] [CrossRef]
- Wu, M.; Yang, R.O.; Duan, J.Y.; Zhu, S.C.; Chen, B.W.; Shi, Z.Y.; Liu, Y.W.; Li, H.Q.; Xia, B.Y.; Zhai, T.Y. Polymer-halogen pockets steering *CO adsorption configurations for highly selective CO2 electroreduction. Adv. Mater. 2025, 37, 2504292. [Google Scholar] [CrossRef]
- Rollier, F.A.; Muravev, V.; Parastaev, A.; van de Poll, R.C.J.; Heinrichs, J.M.J.J.; Ligt, B.; Simons, J.F.M.; Figueiredo, M.C.; Hensen, E.J.M. Restructuring of Cu-based catalysts during CO electroreduction: Evidence for the dominant role of surface defects on the C2+ product selectivity. ACS Catal. 2024, 14, 13246–13259. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Deng, W.Y.; Xu, A.N.; Hochfilzer, D.; Qiao, Y.; Chan, K.; Chorkendorff, I.; Seger, B. Local reaction environment for selective electroreduction of carbon monoxide. Energy Environ. Sci. 2022, 15, 2470–2478. [Google Scholar] [CrossRef]
- Wang, K.; Huang, K.; Wang, Z.M.; An, G.B.; Zhang, M.W.; Liu, W.H.; Fu, S.; Guo, H.Z.; Zhang, B.H.; Lian, C.; et al. Functional group engineering of single-walled carbon nanotubes for anchoring copper nanoparticles toward selective CO2 electroreduction to C2 products. Small 2025, 21, 2502733. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.W.; Gao, W.; Zheng, W.T.; Jiang, Q. Steric hindrance in sulfur vacancy of monolayer MoS2 boosts electrochemical reduction of carbon monoxide to methane. ChemSusChem 2018, 11, 1455–1459. [Google Scholar] [CrossRef]
- Guo, X.H.; Liu, T.F.; Song, Y.P.; Li, R.T.; Wei, R.F.; Liao, Z.Q.; Wu, Z.C.; Gao, D.F.; Fu, Q.; Wang, G.X.; et al. Selective CO electroreduction to multi-carbon oxygenates over atomically dispersed Cu-Ag sites in alkaline membrane electrode assembly electrolyzer. Angew. Chem. Int. Ed. 2025, 64, e202507062. [Google Scholar] [CrossRef]
- Jia, S.Q.; Zhu, Q.G.; Chen, X.; Xue, C.; Dong, M.K.; Deng, T.; Cheng, H.L.; Yao, T.; Jiao, J.P.; Xia, Z.H.; et al. Copper–carbon bond metal–organic frameworks for highly efficient and stable CO2 electrochemical methanation. J. Am. Chem. Soc. 2025, 147, 22580–22588. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.T.; Zong, X.P.; Liu, J.D.; Chen, J.L.; Xu, K.Q.; Wang, X.; Chen, X.J.; Yang, W.T.; Liu, F.M.; Yu, M.; et al. Functionalizing Cu nanoparticles with fluoric polymer to enhance C2+ product selectivity in membrane CO2 reduction. Appl. Catal. B Environ. 2024, 340, 123281. [Google Scholar] [CrossRef]
- Rong, W.F.; Zou, H.Y.; Zang, W.J.; Xi, S.B.; Wei, S.T.; Long, B.H.; Hu, J.H.; Ji, Y.F.; Duan, L.L. Size-dependent activity and selectivity of atomic-level copper nanoclusters during CO/CO2 electroreduction. Angew. Chem. Int. Ed. 2021, 60, 466–472. [Google Scholar] [CrossRef]
- Wu, H.L.; Huang, L.Q.; Timoshenko, J.; Qi, K.; Wang, W.S.; Liu, J.F.; Zhang, Y.; Yang, S.K.; Petit, E.; Flaud, V. Selective and energy-efficient electrosynthesis of ethylene from CO2 by tuning the valence of Cu catalysts through aryl diazonium functionalization. Nat. Energy 2024, 9, 422–433. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Ren, D. Unravelling the effect of crystal facet of derived-copper catalysts on the electroreduction of carbon dioxide under unified mass transport condition. Angew. Chem. Int. Ed. 2025, 64, e202415590. [Google Scholar] [CrossRef]
- Lai, W.C.; Qiao, Y.; Zhang, J.W.; Lin, Z.Q.; Huang, H.W. Design strategies for markedly enhancing energy efficiency in the electrocatalytic CO2 reduction reaction. Energy Environ. Sci. 2022, 15, 3603–3629. [Google Scholar] [CrossRef]
- Wang, C.L.; Lv, Z.H.; Yang, W.X.; Feng, X.; Wang, B. A rational design of functional porous frameworks for electrocatalytic CO2 reduction reaction. Chem. Soc. Rev. 2023, 52, 1382–1427. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Won, H.W.; Hwang, Y.J. Catalyst design strategies for stable electrochemical CO2 reduction reaction. J. Mater. Chem. A. 2020, 8, 15341–15357. [Google Scholar] [CrossRef]
- Liu, C.X.; Zhang, M.L.; Li, J.W.; Xue, W.Q.; Zheng, T.T.; Xia, C.; Zeng, J. Nanoconfinement engineering over hollow multi-shell structured copper towards efficient electrocatalytical C-C coupling. Angew. Chem. Int. Ed. 2022, 61, e202113498. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Song, Y.; Zhang, Z.Y.; Cai, Y.F.; Liu, H.; Xie, W.X.; Deng, D.H. Mechanically induced Cu active sites for selective C-C coupling in CO2 electroreduction. J. Energy Chem. 2022, 74, 198–202. [Google Scholar] [CrossRef]
- Luo, T.; Liu, K.; Fu, J.W.; Chen, S.Y.; Li, H.M.; Hu, J.H.; Liu, M. Tandem catalysis on adjacent active motifs of copper grain boundary for efficient CO2 electroreduction toward C2 products. J. Energy Chem. 2022, 70, 219–223. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Liang, Y.Q.; Fu, J.W.; Liu, K.; Chen, Q.; Wang, X.Q.; Li, H.M.; Zhu, L.; Hu, J.H.; Pan, H.; et al. Vertical Cu nanoneedle arrays enhance the local electric field promoting C2 hydrocarbons in the CO2 electroreduction. Nano Lett. 2022, 22, 1963–1970. [Google Scholar] [CrossRef]
- Luo, D.M.; Dai, W.D.; Wu, K.Y.; Liu, S.Y.; Tang, C.Y.; Sun, Y.J.; Dong, F.; Long, C. Cu-based bimetallic catalysts for electrochemical CO2 reduction: Before and beyond the tandem effect. Nanoscale 2025, 17, 9057–9071. [Google Scholar] [CrossRef]
- Xiong, R.Z.; Xu, H.M.; Zhu, H.R.; Zhang, Z.J.; Li, G.R. Recent progress in Cu-based electrocatalysts for CO2 reduction. Chem. Eng. J. 2025, 505, 159210. [Google Scholar] [CrossRef]
- Liu, M.H.; Cui, C.X.; Yang, S.; Yang, X.B.; Li, X.W.; He, J.; Xu, Q.; Zeng, G.F. Elaborate modulating binding strength of intermediates via three-component covalent organic frameworks for CO2 reduction reaction. Angew. Chem. Int. Ed. 2024, 63, e202401750. [Google Scholar] [CrossRef]
- Fang, J.; Qin, B.H.; Zhang, Q.; Yang, G.X.; Du, S.J.; Liu, Z.T.; Peng, F. Influence of electron-induced effect of ligand on electrocatalytic reduction of CO2 by copper phthalocyanine. Chem. Eng. J. 2025, 506, 160154. [Google Scholar] [CrossRef]
- Li, C.C.; Guo, Z.Y.; Liu, Z.L.; Zhang, T.T.; Shi, H.J.; Cui, J.L.; Zhu, M.H.; Zhang, L.; Li, H.; Li, H.H.; et al. Boosting electrochemical CO2 reduction via surface hydroxylation over Cu-based electrocatalysts. ACS Catal. 2023, 13, 16114–16125. [Google Scholar] [CrossRef]
- Yu, P.E.; Lv, X.M.; Wang, Q.H.; Huang, H.L.; Weng, W.J.; Peng, C.; Zhang, L.J.; Zheng, G.F. Promoting electrocatalytic CO2 reduction to CH4 by copper porphyrin with donor–acceptor structures. Small 2023, 19, 2205730. [Google Scholar] [CrossRef]
- Wang, C.H.; Zhou, W.; Ma, J.M.; Wang, Z.; Zhang, C.Y. Electronic modulation of Cu catalytic interfaces by functionalized ionic liquids for enhanced CO2 reduction. Molecules 2025, 30, 2352. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, Y.K.; Jia, J.F.; Ghosh, T.; Luo, P.; Shen, Y.J.; Wang, S.B.; Zhang, J.G.; Xi, S.B.; Mi, Z.Y.; et al. Tuning catalyst-support interactions enable steering of electrochemical CO2 reduction pathways. Sci. Adv. 2025, 11, eado5000. [Google Scholar] [CrossRef]
- Wan, M.Y.; Yang, Z.Y.; Morgan, H.; Shi, J.Q.; Shi, F.; Liu, M.X.; Wong, H.W.; Gu, Z.Y.; Che, F.L. Enhanced CO2 reactive capture and conversion using aminothiolate ligand-metal interface. J. Am. Chem. Soc. 2023, 145, 26038–26051. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.Q.; Li, Z.J.; Jang, H.; Kim, M.G.; Liu, S.G.; Cho, J.; Liu, X.; Qin, Q. Switching product selectivity in CO2 electroreduction via Cu–S bond length variation. Angew. Chem. Int. Ed. 2024, 63, e202409206. [Google Scholar] [CrossRef]
- Wang, J.X.; Liu, Z.; Jin, W.; Tuo, Y.X.; Zhou, Y.; Zhou, S.S.; Gong, T.T.; Li, J.M.; Ni, Y.T.; Wang, M.; et al. In-situ construction of highly durable Cuδ+ species boosting electrocatalytic reduction of CO2 to C2+ products. Appl. Catal. B Environ. 2025, 375, 125434. [Google Scholar] [CrossRef]
- Wang, H.; Ma, C.; Lu, Q.; Gu, M.; Jiang, L.; Hao, Y.; Hu, F.; Li, L.; Wang, G.; Peng, S.; et al. Precise tuning of functional group spatial distribution on porphyrin rings for enhanced CO2 electroreduction selectivity. Angew. Chem. Int. Ed. 2025, 64, e202501091. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.H.; Wang, D.S.; Zeng, L.B.; Zheng, W.Z.; Lin, W.X.; Peng, X.Y.; Sang, X.H.; Yang, B.; Li, Z.J.; Li, Y.Y.; et al. Engineered spatial confinement of Cu single-atoms with diagonal N-Cu-N motifs for high-rate CO2 methanation. Angew. Chem. Int. Ed. 2025, 64, e202508497. [Google Scholar] [CrossRef] [PubMed]
- Li, W.H.; Chen, Y.H.; Guo, C.Q.; Jia, S.H.; Zhou, Y.Y.; Liu, Z.H.; Jiang, E.H.; Chen, X.K.; Zou, Y.; Hou, P.W.; et al. Confined intermediates boost C2+ selectivity in CO2 electroreduction. ACS Catal. 2024, 14, 13400–13407. [Google Scholar] [CrossRef]
- Han, C.; Yang, T.; Fang, Y.Q.; Du, Y.X.; Jin, S.; Xiong, L.; Zhu, M.Z. Steering the product selectivity of CO2 electroreduction by single-atom switching in isostructural copper nanocluster catalysts. Angew. Chem. Int. Ed. 2025, 64, e202503417. [Google Scholar] [CrossRef]
- Li, X.H.; Zhang, B.W.; Xiong, W.F.; Li, Z.; Xiang, X.Y.; Zhang, S.Y.; Si, D.H.; Li, H.F.; Cao, R. Highly selective CO2 electroreduction to ethylene on long alkyl chains-functionalized copper nanowires. Chin. J. Catal. 2025, 73, 196–204. [Google Scholar] [CrossRef]
- Huang, J.Y.; Yang, Y.; Liang, X.X.; Chen, B.; Shen, Y.; Yang, J.L.; Yu, Y.L.; Huang, F.; He, H.B.; Chen, P.; et al. Highly Selective Electroreduction of CO2 to CH4 on Cu–Pd alloy catalyst: The role of palladium-adsorbed hydrogen species and blocking effect. Adv. Sci. 2025, 12, 2417247. [Google Scholar] [CrossRef]
- Esfandiari, A.; Abdinejad, M.; Seifitokaldani, A. Tuning hydrocarbon selectivity in electrochemical CO2 reduction via copper-porphyrin immobilization on carbon nanotubes. J. Mater. Chem. A 2025, 13, 19944–19954. [Google Scholar] [CrossRef]
- Mohanta, M.K.; Jena, P. Activation and electrochemical reduction of carbon dioxide by transition metal atom-doped copper clusters. Nanoscale 2025, 17, 8505–8514. [Google Scholar] [CrossRef]
- Wang, H.Z.; Bi, X.Z.; Yan, Y.F.; Zhao, Y.Z.; Yang, Z.X.; Ning, H.; Wu, M.B. Efficient Electrocatalytic Reduction of CO2 to Ethanol Enhanced by Spacing Effect of Cu−Cu in Cu2-xSe Nanosheets. Adv. Funct. Mater. 2023, 33, 2214946. [Google Scholar] [CrossRef]
- Li, M.H.; Wang, H.F.; Luo, W.; Sherrell, P.C.; Chen, J.; Yang, J.P. Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction. Adv. Mater. 2020, 32, 2001848. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.Y.; Cai, C.; Dai, M.Y.; Fu, J.W.; Zhang, X.D.; Li, H.J.W.; Zhang, H.; Chen, K.J.; Lin, Y.Y.; Li, H.M.; et al. Recent advances in strategies for improving the performance of CO2 reduction reaction on single atom catalysts. Small Sci. 2021, 1, 2000028. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.X.; Deng, D.N.; Wu, Q.M.; Liu, M.J.; Wang, Y.C.; Jiang, J.B.; Zheng, X.R.; Zheng, H.R.; Bai, Y.; Chen, Y.B.; et al. Insight on atomically dispersed Cu catalysts for electrochemical CO2 reduction. ACS Nano 2023, 17, 18688–18705. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81. [Google Scholar] [CrossRef]
- Yang, X.F.; Wang, A.Q.; Qiao, B.T.; Li, J.; Liu, J.Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748. [Google Scholar] [CrossRef]
- Gong, L.L.; Zhang, D.T.; Zhu, Y.H.; Shen, Y.; Zhang, J.; Han, X.; Zhang, L.P.; Xia, Z.H. Catalytic mechanisms and design principles for single-atom catalysts in highly efficient CO2 conversion. Adv. Energy Mater. 2019, 9, 1902625. [Google Scholar] [CrossRef]
- Choi, H.; Lee, D.K.; Han, M.K.; Janani, G.; Surendran, S.; Kim, J.H.; Kim, J.K.; Cho, H.; Sim, U. Non-noble metal-based single-atom catalysts for efficient electrochemical CO2 reduction reaction. J. Electrochem. Soc. 2020, 167, 164503. [Google Scholar] [CrossRef]
- Bi, M.F.; Yao, Y.S.; Kang, J.; Wang, Y.H.; Shi, T.F.; Zhu, Z.J.; Wu, Y.J.; Tang, Z.K.; Chen, S.; Liu, P.R.; et al. High-density atomically dispersed copper sites with close distances on ultrathin n-doped carbon nanosheets as an efficient oxygen reduction catalyst. ACS Appl. Mater. Interfaces 2025, 17, 44541–44551. [Google Scholar] [CrossRef]
- Wang, N.N.; Jiang, W.B.; Yang, J.; Feng, H.S.; Zheng, Y.B.; Wang, S.; Li, B.F.; Heng, J.Z.X.; Ong, W.C.; Tan, H.R.; et al. Contact-electro-catalytic CO2 reduction from ambient air. Nat. Commun. 2024, 15, 5913. [Google Scholar] [CrossRef]
- Xia, W.; Xie, Y.J.; Jia, S.Q.; Han, S.T.; Qi, R.J.; Chen, T.; Xing, X.Q.; Yao, T.; Zhou, D.W.; Dong, X.; et al. Adjacent copper single atoms promote C-C coupling in electrochemical CO2 reduction for the efficient conversion of ethanol. J. Am. Chem. Soc. 2023, 145, 17253–17264. [Google Scholar] [CrossRef]
- Feng, J.Q.; Zhang, L.B.; Liu, S.J.; Xu, L.; Ma, X.D.; Tan, X.X.; Wu, L.M.; Qian, Q.L.; Wu, T.B.; Zhang, J.L.; et al. Modulating adsorbed hydrogen drives electrochemical CO2-to-C2 products. Nat. Commun. 2023, 14, 4615. [Google Scholar] [CrossRef]
- Yang, X.J.; Chen, J.F.; Hu, L.S.; Wei, J.Y.; Shuai, M.B.; Huang, D.S.; Yue, G.Z.; Astruc, D.; Zhao, P.X. Palladium separation by Pd-catalyzed gel formation via alkyne coupling. Chem. Mater. 2019, 31, 7386–7394. [Google Scholar] [CrossRef]
- Wang, Y.F.; Chen, Z.; Han, P.; Du, Y.H.; Gu, Z.X.; Xu, X.; Zheng, G.F. Single-atomic Cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4. ACS Catal. 2018, 8, 7113–7119. [Google Scholar] [CrossRef]
- Xu, H.P.; Rebollar, D.; He, H.Y.; Chong, L.N.; Liu, Y.Z.; Sun, C.J.; Li, T.; Muntean, J.V.; Winans, R.E.; Liu, D.J.; et al. Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat. Energy 2020, 5, 623–632. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, X.Q.; Zhu, J.N.; Wang, Z.Y.; Liu, X.L.; Dai, J.W.; Gong, J.; Liu, H.F.; Li, G.F. Compositional gradient Au-Cu bimetallic heterostructures for efficient electroreduction of CO2 to ethanol at low potential. J. Mater. Chem. A 2025, 13, 24706–24715. [Google Scholar] [CrossRef]
- Peterson, A.A.; Nørskov, J.K. Activity Descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 2012, 3, 251–258. [Google Scholar] [CrossRef]
- Abild-Pedersen, F.; Greeley, J.; Studt, F.; Rossmeisl, J.; Munter, T.R.; Moses, P.G.; Skúlason, E.; Bligaard, T.; Nørskov, J.K. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 2007, 99, 016105. [Google Scholar] [CrossRef]
- Zou, X.Y.; Li, A.; Ma, C.; Gao, Z.; Zhou, B.W.; Zhu, L.; Huang, Z. Nitrogen-doped carbon confined Cu-Ag bimetals for efficient electroreduction of CO2 to high-order products. Chem. Eng. J. 2023, 468, 143606. [Google Scholar] [CrossRef]
- Lu, L.; Sun, X.F.; Ma, J.; Yang, D.X.; Wu, H.H.; Zhang, B.X.; Zhang, J.L.; Han, B.X. Highly efficient electroreduction of CO2 to methanol on palladium-copper bimetallic aerogels. Angew. Chem. Int. Ed. 2018, 57, 14149–14153. [Google Scholar] [CrossRef]
- Zhang, M.L.; Zhang, Z.D.; Zhao, Z.H.; Huang, H.; Anjum, D.H.; Wang, D.S.; He, J.H.; Huang, K.W. Tunable selectivity for electrochemical CO2 reduction by bimetallic Cu-Sn catalysts: Elucidating the roles of Cu and Sn. ACS Catal. 2021, 11, 11103–11108. [Google Scholar] [CrossRef]
- Li, Z.Q.; Sun, B.; Xiao, D.F.; Wang, Z.Y.; Liu, Y.Y.; Zheng, Z.K.; Wang, P.; Dai, Y.; Cheng, H.F.; Huang, B.B. Electron-rich Bi nanosheets promote CO2− formation for high-performance and pH-universal electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 2023, 62, e202217569. [Google Scholar] [CrossRef]
- Wei, Z.N.; Wang, W.W.; Shao, T.; Yang, S.B.; Liu, C.; Si, D.H.; Cao, R.; Cao, M.N. Constructing Ag/Cu2O interface for efficient neutral CO2 electroreduction to C2H4. Angew. Chem. Int. Ed. 2025, 64, e202417066. [Google Scholar] [CrossRef]
- Yan, Z.Q.; Liu, W.H.; Liu, X.L.; Shen, Z.C.; Li, X.; Cao, D. Recent progress in electrocatalytic conversion of CO2 to valuable C2 products. Adv. Mater. Interfaces 2023, 10, 2300186. [Google Scholar] [CrossRef]
- Li, J.W.; Wei, M.J.; Ji, B.F.; Hu, S.P.; Xue, J.; Zhao, D.H.; Wang, H.Y.; Liu, C.X.; Ye, Y.F.; Xu, J.L.; et al. Copper-catalysed electrochemical CO2 methanation via the alloying of single cobalt atoms. Angew. Chem. Int. Ed. 2025, 64, e202417008. [Google Scholar] [CrossRef]
- Guan, Y.N.; Li, Y.Z.; Li, Z.J.; Hou, Y.; Lei, L.C.; Yang, B. Promotion of C-C coupling in the CO2 electrochemical reduction to valuable C2+ products: From micro-foundation to macro-application. Adv. Mater. 2025, 37, 2417567. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.X.; Zhao, J.K.; Yang, Y.; Huang, S.F.; Li, J.; Zhang, S.Z.; Zhao, Y.; Zhang, A.; Wang, C.; Appadoo, D.; et al. Stabilizing copper sites in coordination polymers toward efficient electrochemical C-C coupling. Nat. Commun. 2023, 14, 474. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, C.; Zhang, C.Y.; Shi, Y.H.; Li, J.; Johannessen, B.; Liang, Y.X.; Zhang, S.Z.; Song, Q.; Zhang, H.W.; et al. Ligand-tuning copper in coordination polymers for efficient electrochemical C-C coupling. Nat. Commun. 2024, 15, 6316. [Google Scholar] [CrossRef]
- Zhang, K.F.; Xu, J.; Yan, T.R.; Jia, L.; Zhang, J.; Shao, C.C.; Zhang, L.; Han, N.; Li, Y.G. Molecular modulation of sequestered copper sites for efficient electroreduction of carbon dioxide to methane. Adv. Funct. Mater. 2023, 33, 2214062. [Google Scholar] [CrossRef]
- Chang, C.J.; Lin, S.C.; Chen, H.C.; Wang, J.L.; Zheng, K.J.; Zhu, Y.P.; Chen, H.M. Dynamic reoxidation/reduction-driven atomic interdiffusion for highly selective CO2 reduction toward methane. J. Am. Chem. Soc. 2020, 142, 12119–12132. [Google Scholar] [CrossRef]
- Chang, Q.W.; Liu, Y.M.; Lee, J.H.; Ologunagda, D.; Hwang, S.; Xie, Z.H.; Kattel, S.; Lee, J.H.; Chen, J.G. Metal-coordinated phthalocyanines as platform molecules for understanding isolated metal sites in the electrochemical reduction of CO2. J. Am. Chem. Soc. 2022, 144, 16131–16138. [Google Scholar] [CrossRef]
- Fang, W.; Wang, C.T.; Liu, Z.Q.; Wang, L.; Liu, L.; Li, H.J.; Xu, S.D.; Zheng, A.M.; Qin, X.D.; Liu, L.J.; et al. Physical mixing of a catalyst and a hydrophobic polymer promotes CO hydrogenation through dehydration. Science 2022, 377, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.X.; Chen, Z.H.; Liu, X.; Zhang, F. A mini-review on recent progress of new sensitizers for luminescence of lanthanide doped nanomaterials. Nano Res. 2020, 13, 1795–1809. [Google Scholar] [CrossRef]
- Kottakkat, T.; Klingan, K.; Jiang, S.; Jovanov, Z.P.; Grote, J.P.; Davies, V.H.; El-Nagar, G.A.M.; Dau, H.; Roth, C. Electrodeposited AgCu foam catalysts for enhanced reduction of CO2 to CO. ACS Appl. Mater. Interfaces 2019, 11, 14734–14744. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yin, K.B.; Lv, L.F.; Kou, T.Y.; Zhang, C.; Zhang, J.; Gao, H.; Zhang, Z.H. Eutectic-directed self-templating synthesis of PtNi nanoporous nanowires with superior electrocatalytic performance towards the oxygen reduction reaction: Experiment and DFT calculation. J. Mater. Chem. A 2017, 5, 23651–23661. [Google Scholar] [CrossRef]
- Zhu, W.W.; Zhao, K.M.; Liu, S.Q.; Liu, M.; Peng, F.; An, P.A.; Qin, B.H.; Zhou, H.M.; Li, H.M.; He, Z. Low-overpotential selective reduction of CO2 to ethanol on electrodeposited Cux Auy nanowire arrays. J. Energy Chem. 2019, 37, 176–182. [Google Scholar] [CrossRef]
- Zhang, S.S.; Zhao, S.L.; Qu, D.X.; Liu, X.J.; Wu, Y.P.; Chen, Y.H.; Huang, W. Electrochemical reduction of CO2 toward C2 valuables on Cu@Ag core-Shell tandem catalyst with tunable shell thickness. Small 2021, 17, 2102293. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.M.; Zachman, M.J.; Li, Y.X.; Zeng, Y.C.; Hwang, S.; Liang, J.S.; Lyons, M.; Zhao, Q.; Mao, Y.; Shao, Y.Y.; et al. Highly dense atomic Fe-Ni dual metal sites for efficient CO2 to CO electrolyzers at industrial current densities. Energy Environ. Sci. 2025, 18, 5643–5656. [Google Scholar] [CrossRef]
- Zhao, C.M.; Dai, X.Y.; Yao, T.; Chen, W.X.; Wang, X.Q.; Wang, J.; Yang, J.; Wei, S.Q.; Wu, Y.; Li, Y.D. Ionic exchange of metal-organic frameworks to access single-nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 2017, 139, 8078–8081. [Google Scholar] [CrossRef]
- Zhuang, T.T.; Liang, Z.Q.; Seifitokaldani, A.; Li, Y.; De Luna, P.; Burdyny, T.; Che, F.L.; Meng, F.; Min, Y.M.; Quintero-Bermudez, R.; et al. Steering post-C-C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 2018, 1, 421–428. [Google Scholar] [CrossRef]
- Garza, A.J.; Bell, A.T.; Head-Gordon, M. Is subsurface oxygen necessary for the electrochemical reduction of CO2 on copper? J. Phys. Chem. Lett. 2018, 9, 601–606. [Google Scholar] [CrossRef]
- Kim, C.; Cho, K.M.; Park, K.; Kim, J.Y.; Yun, G.T.; Toma, F.M.; Gereige, I.; Jung, H.T. Cu/Cu2O interconnected porous aerogel catalyst for highly productive electrosynthesis of ethanol from CO2. Adv. Funct. Mater. 2021, 31, 2102142. [Google Scholar] [CrossRef]
- Zhang, R.J.; Zhang, J.L.; Wang, S.; Tan, Z.G.; Yang, Y.S.; Song, Y.; Li, M.L.; Zhao, Y.Z.; Wang, H.; Han, B.X.; et al. Synthesis of n-propanol from CO2 electroreduction on bicontinuous Cu2O/Cu nanodomains. Angew. Chem. Int. Ed. 2024, 63, e202405733. [Google Scholar] [CrossRef]
- Zhang, J.F.; Wang, Y.; Li, Z.Y.; Xia, S.; Cai, R.; Ma, L.; Zhang, T.Y.; Ackley, J.; Yang, S.Z.; Wu, Y.C. Grain boundary-derived Cu+/Cu0 interfaces in CuO nanosheets for low overpotential carbon dioxide electroreduction to ethylene. Adv. Sci. 2022, 9, 2200454. [Google Scholar] [CrossRef]
- Cai, R.M.; Sun, M.Z.; Yang, F.; Gu, M.D.; Huang, B.L.; Yang, S.H. Engineering Cu(I)/Cu(0) interfaces for efficient ethanol production from CO2 electroreduction. Chem 2024, 10, 211–233. [Google Scholar] [CrossRef]
- Zang, Y.P.; Liu, T.F.; Wei, P.F.; Li, H.F.; Wang, Q.; Wang, G.X.; Bao, X.H. Selective CO2 electroreduction to ethanol over a carbon-coated CuOx catalyst. Angew. Chem. Int. Ed. 2022, 61, e202209629. [Google Scholar] [CrossRef]
- Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Adsorption of CO accompanied with simultaneous charge transfer on copper single crystal electrodes related with electrochemical reduction of CO2 to hydrocarbons. Surf. Sci. 1995, 335, 258–263. [Google Scholar] [CrossRef]
- Montoya, J.H.; Shi, C.; Chan, K.; Nørskov, J.K. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 2015, 6, 2032–2037. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.G.; Wu, Q.; Liang, X.Z.; Wang, Z.Y.; Zheng, Z.K.; Wang, P.; Liu, Y.Y.; Dai, Y.; Whanbo, M.H.; Huang, B.B. Cu2O Nanoparticles with Both {100} and {111} Facets for Enhancing the Selectivity and Activity of CO2 Electroreduction to Ethylene. Adv. Sci. 2020, 7, 1902820. [Google Scholar] [CrossRef]
- Jiang, K.; Sandberg, R.; Akey, A.J.; Liu, X.Y.; Bell, D.C.; Nørskov, J.K.; Chan, K.; Wang, H.T. Metal ion cycling of Cu foil for selective C-C coupling in electrochemical CO2 reduction. Nat Catal. 2018, 1, 111–119. [Google Scholar] [CrossRef]
- Iyengar, P.; Kolb, M.J.; Pankhurst, J.R.; Calle-Vallejo, F.; Buonsanti, R. Elucidating the facet-dependent selectivity for CO2 electroreduction to ethanol of Cu-Ag tandem catalysts. ACS Catal. 2021, 11, 4456–4463. [Google Scholar] [CrossRef]
- Ma, Y.B.; Yu, J.L.; Sun, M.Z.; Chen, B.; Zhou, X.C.; Ye, C.L.; Guan, Z.Q.; Guo, W.H.; Wang, G.; Lu, S.Y.; et al. Confined growth of silver-copper janus nanostructures with {100} facets for highly selective tandem electrocatalytic carbon dioxide reduction. Adv. Mater. 2022, 34, 2110607. [Google Scholar] [CrossRef]
- Li, F.W.; Li, Y.C.; Wang, Z.Y.; Li, J.; Nam, D.H.; Lum, Y.; Luo, M.C.; Wang, X.; Ozden, A.; Hung, S.F.; et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule-metal catalyst interfaces. Nat. Catal. 2020, 3, 75–82. [Google Scholar] [CrossRef]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, H.; Yang, L.; Han, C.; Bi, M.; Li, H.; Zeng, Y.; Pan, K.; Yin, S.; Wang, F.; Pan, S. Enhancing CO2 Reduction Performance on Cu-Based Catalysts: Modulating Electronic Properties and Molecular Configurations. Materials 2025, 18, 4964. https://doi.org/10.3390/ma18214964
Han H, Yang L, Han C, Bi M, Li H, Zeng Y, Pan K, Yin S, Wang F, Pan S. Enhancing CO2 Reduction Performance on Cu-Based Catalysts: Modulating Electronic Properties and Molecular Configurations. Materials. 2025; 18(21):4964. https://doi.org/10.3390/ma18214964
Chicago/Turabian StyleHan, Huimin, Luxin Yang, Chao Han, Maosheng Bi, Hongbo Li, Yuwei Zeng, Kunming Pan, Shengyu Yin, Fang Wang, and Saifei Pan. 2025. "Enhancing CO2 Reduction Performance on Cu-Based Catalysts: Modulating Electronic Properties and Molecular Configurations" Materials 18, no. 21: 4964. https://doi.org/10.3390/ma18214964
APA StyleHan, H., Yang, L., Han, C., Bi, M., Li, H., Zeng, Y., Pan, K., Yin, S., Wang, F., & Pan, S. (2025). Enhancing CO2 Reduction Performance on Cu-Based Catalysts: Modulating Electronic Properties and Molecular Configurations. Materials, 18(21), 4964. https://doi.org/10.3390/ma18214964

