Compressive Strength, Thermal Conductivity, Vapor Permeability and Specific Heat of Hemp-Lime Composites Varying in Density for Wall, Roof and Floor Applications
Abstract
1. Introduction
1.1. Context and Purpose
1.2. Factors Influencing Compressive Strength
1.3. Factors Influencing Thermal Conductivity
1.4. Factors Influencing Water Vapor Permeability
1.5. Factors Influencing Specific Heat
2. Materials and Methods
2.1. Mixtures and Samples Preparation
2.2. Compressive Strength
2.3. Thermal Conductivity
2.4. Water Vapor Permeability
2.5. Specific Heat
3. Results and Discussion
3.1. Compressive Strength
3.2. Thermal Conductivity
3.3. Water Vapor Permeability
3.4. Specific Heat
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1
| Measured Parameter (Unit) | R400 | R430 | R460 | R490 | R520 | R550 | R580 | R610 | R640 | 
|---|---|---|---|---|---|---|---|---|---|
| Volumetric density at RH 50% (kg/m3) | 211.9 | 227.0 | 248.3 | 253.7 | 273.2 | 292.7 | 299.6 | 324.2 | 336.7 | 
| Volumetric density of dry sample (kg/m3) | 197.1 | 211.0 | 231.9 | 236.0 | 253.7 | 271.3 | 277.9 | 300.5 | 312.1 | 
| Compressive strength 1 (MPa) | 0.05 | 0.08 | 0.11 | 0.10 | 0.17 | 0.22 | 0.20 | 0.30 | 0.34 | 
| Measured Parameter (Unit) | W600 | W630 | W660 | W690 | W720 | W750 | W780 | W810 | W840 | W870 | 
|---|---|---|---|---|---|---|---|---|---|---|
| Volumetric density at RH 50% (kg/m3) | 349.4 | 361.7 | 369.3 | 396.8 | 403.1 | 424.1 | 445.9 | 453.5 | 480.9 | 495.2 | 
| Volumetric density of dry sample (kg/m3) | 318.6 | 330.2 | 335.9 | 361.3 | 366.3 | 384.7 | 404.0 | 411.0 | 434.2 | 447.2 | 
| Compressive strength 1 (MPa) | 0.36 | 0.44 | 0.47 | 0.68 | 0.74 | 0.84 | 1.10 | 1.13 | 1.33 | 1.31 | 
| Compressive strength 2 (MPa) | 0.38 | 0.48 | 0.55 | 0.74 | 0.78 | 0.92 | 1.00 | 1.04 | 1.17 | 1.27 | 
| Measured Parameter (Unit) | F690 | F720 | F750 | F780 | F810 | F840 | F870 | F900 | F930 | 
|---|---|---|---|---|---|---|---|---|---|
| Volumetric density at RH 50% (kg/m3) | 365.6 | 370.0 | 398.5 | 406.9 | 430.1 | 451.8 | 460.9 | 463.1 | 487.3 | 
| Volumetric density of dry sample (kg/m3) | 333.6 | 338.8 | 362.9 | 369.8 | 390.0 | 409.1 | 417.1 | 420.0 | 441.9 | 
| Compressive strength 1 (MPa) | 0.45 | 0.60 | 0.62 | 0.75 | 0.88 | 1.04 | 0.92 | 1.06 | 1.50 | 
| Compressive strength 2 (MPa) | 0.43 | 0.44 | 0.61 | 0.75 | 0.88 | 1.04 | 0.91 | 1.05 | 1.37 | 
Appendix A.2
| Measured Parameter (Unit) | R400 | R430 | R460 | R490 | R520 | R550 | R580 | R610 | R640 | 
|---|---|---|---|---|---|---|---|---|---|
| Volumetric density at RH 50% (kg/m3) | 213.8 | 226.6 | 247.0 | 256.8 | 273.6 | 286.0 | 301.6 | 314.4 | 322.0 | 
| Coefficient of thermal conductivity (W/(m·K)) | 0.0671 | 0.0670 | 0.0700 | 0.0710 | 0.0704 | 0.0728 | 0.0741 | 0.0755 | 0.0761 | 
| Measured Parameter (Unit) | W600 | W630 | W660 | W690 | W720 | W750 | W780 | W810 | W840 | W870 | 
|---|---|---|---|---|---|---|---|---|---|---|
| Volumetric density at RH 50% (kg/m3) | 327.3 | 347.8 | 369.2 | 383.9 | 389.6 | 414.6 | 425.2 | 439.1 | 455.1 | 453.3 | 
| Coeff. of thermal conductivity (W/(m·K)) | 0.1080 | 0.1055 | 0.1157 | 0.1163 | 0.1225 | 0.1249 | 0.1284 | 0.1273 | 0.1323 | 0.1339 | 
| Measured Parameter (Unit) | F690 | F720 | F750 | F780 | F810 | F840 | F870 | F900 | F930 | 
|---|---|---|---|---|---|---|---|---|---|
| Volumetric density at RH 50% (kg/m3) | 364.6 | 393.9 | 417.3 | 403.3 | 426.6 | 441.5 | 451.9 | 457.6 | 477.3 | 
| Coefficient of thermal conductivity (W/(m·K)) | 0.0879 | 0.0993 | 0.1002 | 0.1076 | 0.1094 | 0.1182 | 0.1196 | 0.1233 | 0.1216 | 
Appendix A.3
| Measured Parameter (Unit) | R400 | R430 | R460 | R490 | R520 | R550 | R580 | R610 | R640 | 
|---|---|---|---|---|---|---|---|---|---|
| Volumetric density at RH 50% (kg/m3) | 231.6 | 249.0 | 248.2 | 256.2 | 269.7 | 285.5 | 299.8 | 308.8 | 330.3 | 
| Coefficient of diffusion resistance (-) | 3.61 | 3.78 | 3.61 | 3.96 | 4.07 | 4.38 | 4.68 | 4.97 | 5.37 | 
| Measured Parameter (Unit) | W600 | W630 | W660 | W690 | W720 | W750 | W780 | W810 | W840 | W870 | 
|---|---|---|---|---|---|---|---|---|---|---|
| Volumetric density at RH 50% (kg/m3) | 335.9 | 345.2 | 381.5 | 361.1 | 387.4 | 409.7 | 428.6 | 439.8 | 457.9 | 474.0 | 
| Coefficient of diffusion resistance (-) | 4.42 | 4.10 | 4.58 | 4.59 | 5.23 | 5.53 | 5.77 | 5.69 | 6.49 | 7.37 | 
| Measured Parameter (Unit) | F690 | F720 | F750 | F780 | F810 | F840 | F870 | F900 | F930 | 
|---|---|---|---|---|---|---|---|---|---|
| Volumetric density at RH 50% (kg/m3) | 352.3 | 390.8 | 393.8 | 403.3 | 429.1 | 441.3 | 453.4 | 463.8 | 507.4 | 
| Coefficient of diffusion resistance (-) | 5.85 | 6.14 | 6.41 | 6.44 | 7.59 | 7.46 | 7.99 | 8.71 | 10.10 | 
Appendix A.4
| Measured Parameter (Unit) | R1 | R2 | R3 | R4 | R5 | Av. | Std. Dev. | 
|---|---|---|---|---|---|---|---|
| Specific heat at approx. 60 °C (J/(g·K)) | 1.320 | 1.237 | 1.241 | 1.241 | 1.259 | 1.260 | 0.035 | 
| Specific heat at approx. 30 °C (J/(g·K)) | 0.756 | 0.810 | 0.791 | 0.775 | 0.732 | 0.773 | 0.030 | 
| Specific heat at approx. 20 °C 1 (J/(g·K)) | 0.590 | 0.670 | 0.667 | 0.670 | 0.551 | 0.629 | 0.056 | 
| Measured Parameter (Unit) | W1 | W2 | W3 | W4 | W5 | Av. | Std. Dev. | 
|---|---|---|---|---|---|---|---|
| Specific heat at approx. 60 °C (J/(g·K)) | 1.208 | 1.213 | 1.180 | 1.168 | 1.248 | 1.204 | 0.031 | 
| Specific heat at approx. 30 °C (J/(g·K)) | 0.843 | 0.838 | 0.817 | 0.792 | 0.885 | 0.835 | 0.034 | 
| Specific heat at approx. 20 °C 1 (J/(g·K)) | 0.699 | 0.728 | 0.685 | 0.682 | 0.756 | 0.710 | 0.031 | 
| Measured Parameter (Unit) | F1 | F2 | F3 | F4 | F5 | Av. | Std. Dev. | 
|---|---|---|---|---|---|---|---|
| Specific heat at approx. 60 °C (J/(g·K)) | 1.185 | 1.165 | 1.219 | 1.178 | 1.145 | 1.178 | 0.027 | 
| Specific heat at approx. 30 °C (J/(g·K)) | 0.878 | 0.838 | 0.912 | 0.858 | 0.829 | 0.863 | 0.033 | 
| Specific heat at approx. 20 °C 1 (J/(g·K)) | 0.762 | 0.701 | 0.762 | 0.730 | 0.689 | 0.729 | 0.034 | 
References
- IEA. Global Status Report for Buildings and Construction 2019; IEA: Paris, France, 2019; Available online: https://www.iea.org/reports/global-status-report-for-buildings-and-construction-2019 (accessed on 24 July 2025).
- Ritchie, H.; Samborska, V.; Roser, M. Urbanization. Our World in Data. Available online: https://ourworldindata.org/urbanization (accessed on 24 July 2025).
- Sartori, I.; Hestnes, A.G. Energy use in the life cycle of conventional and low-energy buildings: A review article. Energy Build. 2007, 39, 249–257. [Google Scholar] [CrossRef]
- Hill, C.; Norton, A.; Dibdiakova, J. A comparison of the environmental impacts of different categories of insulation materials. Energy Build. 2018, 162, 12–20. [Google Scholar] [CrossRef]
- Asdrubali, F.; D’Alessandro, F.; Schiavoni, S. A review of unconventional sustainable building insulation materials. Sustain. Mater. Technol. 2015, 4, 1–17. [Google Scholar] [CrossRef]
- Hurtado, P.L.; Rouilly, A.; Vandenbossche, V.; Raynaud, C. A review on the properties of cellulose fibre insulation. Built Environ. 2016, 96, 170–177. [Google Scholar] [CrossRef]
- Koh, C.H.; Kraniotis, D. A review of material properties and performance of straw bale as building material. Constr. Build. Mater. 2020, 259, 120385. [Google Scholar] [CrossRef]
- Jiang, Y.; Lawrence, M.; Ansell, M.P.; Hussain, A. Cell Wall Microstructure, Pore Size Distribution and Absolute Density of Hemp Shiv. R. Soc. Open Sci. 2018, 5, 171945. [Google Scholar] [CrossRef]
- Laborel-Préneron, A.; Magniont, C.; Aubert, J. Characterization of Barley Straw, Hemp Shiv and Corn Cob as Resources for Bioaggregate Based Building Materials. Waste Biomass Valorization 2018, 9, 1095–1112. [Google Scholar] [CrossRef]
- Gołębiewski, M.; Narloch, P.; Piątkiewicz, W.; Wasilewski, I. Trwałość Kompozytów Wapienno-Konopnych w Świetle Różnych Metod Badawczych. Mater. Bud. 2023, 2023, 2–8. [Google Scholar] [CrossRef]
- Kaur, G.; Kander, R. The Sustainability of Industrial Hemp: A Literature Review of Its Economic, Environmental, and Social Sustainability. Sustainability 2023, 15, 6457. [Google Scholar] [CrossRef]
- Rahim, M.; Douzane, O.; Tran Le, A.D.; Langlet, T. Effect of Moisture and Temperature on Thermal Properties of Three Bio-Based Materials. Constr. Build. Mater. 2016, 111, 119–127. [Google Scholar] [CrossRef]
- Benfratello, S.; Capitano, C.; Peri, G.; Rizzo, G.; Scaccianoce, G.; Sorrentino, G. Thermal and Structural Properties of a Hemp-Lime Biocomposite. Constr. Build. Mater. 2013, 48, 745–754. [Google Scholar] [CrossRef]
- Marceau, S.; Glé, P.; Guéguen-Minerbe, M.; Gourlay, E.; Moscardelli, S.; Nour, I.; Amziane, S. Influence of Accelerated Aging on the Properties of Hemp Concretes. Constr. Build. Mater. 2017, 139, 524–530. [Google Scholar] [CrossRef]
- Dinh, T.M.; Magniont, C.; Coutand, M. Hemp Concrete Using Innovative Pozzolanic Binder. In Proceedings of the First International Conference on Bio-Based Building Materials, Clermont-Ferrand, France, 22–24 June 2015. [Google Scholar]
- Asghari, N.; Memari, A.M. State of the Art Review of Attributes and Mechanical Properties of Hempcrete. Biomass 2024, 4, 65–91. [Google Scholar] [CrossRef]
- Jami, T.; Karade, S.R.; Singh, L.P. A Review of the Properties of Hemp Concrete for Green Building Applications. J. Clean. Prod. 2019, 239, 117852. [Google Scholar] [CrossRef]
- Sáez-Pérez, M.P.; Brümmer, M.; Durán-Suárez, J.A. A Review of the Factors Affecting the Properties and Performance of Hemp Aggregate Concretes. J. Build. Eng. 2020, 31, 101323. [Google Scholar] [CrossRef]
- Sinka, M.; Van den Heede, P.; De Belie, N.; Bajare, D.; Sahmenko, G.; Korjakins, A. Comparative Life Cycle Assessment of Magnesium Binders as an Alternative for Hemp Concrete. Resour. Conserv. Recycl. 2018, 133, 288–299. [Google Scholar] [CrossRef]
- Haustein, E. Thermal Insulation Properties of the Lime-Cement Composite with Hemp Shives. Ecol. Eng. 2018, 19, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Kinnane, O.; Reilly, A.; Grimes, J.; Pavia, S.; Walker, R. Acoustic Absorption of Hemp-Lime Construction. Constr. Build. Mater. 2016, 122, 674–682. [Google Scholar] [CrossRef]
- Le, A.D.T.; Maalouf, C.; Mai, T.H.; Wurtz, E.; Collet, F. Transient Hygrothermal Behaviour of a Hemp Concrete Building Envelope. Energy Build. 2010, 42, 1797–1806. [Google Scholar] [CrossRef]
- Ip, K.; Miller, A. Life Cycle Greenhouse Gas Emissions of Hemp-Lime Wall Constructions in the UK. Resour. Conserv. Recycl. 2012, 69, 1–9. [Google Scholar] [CrossRef]
- Ingrao, C.; Lo Giudice, A.; Bacenetti, J.; Tricase, C.; Dotelli, G.; Fiala, M.; Siracusa, V.; Mbohwa, C. Energy and Environmental Assessment of Industrial Hemp for Building Applications: A Review. Renew. Sustain. Energy Rev. 2015, 51, 29–42. [Google Scholar] [CrossRef]
- Shea, A.; Lawrence, M.; Walker, P. Hygrothermal Performance of an Experimental Hemp-Lime Building. Constr. Build. Mater. 2012, 36, 270–275. [Google Scholar] [CrossRef]
- Elfordy, S.; Lucas, F.; Tancret, F. Mechanical and Thermal Properties of Lime and Hemp Concrete (“Hempcrete”) Manufactured by a Projection Process. Constr. Build. Mater. 2008, 22, 2116–2123. [Google Scholar] [CrossRef]
- Williams, J.; Lawrence, M.; Walker, P. Projection Formed and Precast Hemp-Lime: Better by Design? In Proceedings of the 2nd International Conference on Bio-Based Building Materials & 1st Conference on ECOlogical Valorisation of GRAnular and FIbrous Materials, Clermont-Ferrand, France, 21–23 June 2017. [Google Scholar]
- Gołębiewski, M. Aspekty Zastosowania Kompozytów Wapienno-Konopnych w Budownictwie Indywidualnym Domów Mieszkalnych w Architekturze Proekologicznej. Ph.D. Thesis, Warsaw University of Technology, Warszawa, Poland, 2020. [Google Scholar]
- Nguyen, T.T.; Picandet, V.; Carre, P.; Lecompte, T.; Amziane, S.; Baley, C. Effect of Compaction on Mechanical and Thermal Properties of Hemp Concrete. Eur. J. Environ. Civ. Eng. 2011, 14, 545–560. [Google Scholar] [CrossRef]
- Walker, R.; Pavía, S. Moisture Transfer and Thermal Properties of Hemp-Lime Concretes. Constr. Build. Mater. 2014, 64, 270–276. [Google Scholar] [CrossRef]
- Brzyski, P. Hemp-Lime Composite as Wall Material Meeting the Requirements for Sustainable Development in Construction Industry. Ph.D. Thesis, Lublin University of Technology, Lublin, Poland, 2018. [Google Scholar]
- Piątkiewicz, W.; Narloch, P.; Pietruszka, B. Influence of Hemp-Lime Composite Composition on Its Mechanical and Physical Properties. Arch. Civ. Eng. 2020, 66, 485–503. [Google Scholar] [CrossRef]
- Somé, S.C.; Ben Fraj, A.; Pavoine, A.; Hajj Chehade, M. Modeling and Experimental Characterization of Effective Transverse Thermal Properties of Hemp Insulation Concrete. Constr. Build. Mater. 2018, 189, 384–396. [Google Scholar] [CrossRef]
- Collet, F.; Pretot, S. Thermal Conductivity of Hemp Concretes: Variation with Formulation, Density and Water Content. Constr. Build. Mater. 2014, 65, 612–619. [Google Scholar] [CrossRef]
- Williams, J.; Lawrence, M.; Walker, P. The Influence of Constituents on the Properties of the Bio-Aggregate Composite Hemp-Lime. Constr. Build. Mater. 2018, 159, 9–17. [Google Scholar] [CrossRef]
- Williams, J.; Lawrence, M.; Walker, P. The Influence of the Casting Process on the Internal Structure and Physical Properties of Hemp-Lime. Mater. Struct. 2017, 50, 108. [Google Scholar] [CrossRef]
- Pundiene, I.; Vitola, L.; Pranckeviciene, J.; Bajare, D. Hemp Shive-Based Bio-Composites Bounded by Potato Starch Binder: The Roles of Aggregate Particle Size and Aspect Ratio. J. Ecol. Eng. 2022, 23, 220–234. [Google Scholar] [CrossRef]
- Hussain, A.; Calabria-Holley, J.; Lawrence, M.; Jiang, Y. Hygrothermal and Mechanical Characterisation of Novel Hemp Shiv Based Thermal Insulation Composites. Constr. Build. Mater. 2019, 212, 561–568. [Google Scholar] [CrossRef]
- Seng, B.; Magniont, C.; Lorente, S. Characterization of a Precast Hemp Concrete. Part I: Physical and Thermal Properties. J. Build. Eng. 2018, 24, 100540. [Google Scholar] [CrossRef]
- Brzyski, P.; Gładecki, M.; Rumińska, M.; Pietrak, K.; Kubiś, M.; Łapka, P. Influence of Hemp Shives Size on Hygro-Thermal and Mechanical Properties of a Hemp-Lime Composite. Materials 2020, 13, 5383. [Google Scholar] [CrossRef] [PubMed]
- Stevulova, N.; Kidalova, L.; Junak, J.; Cigasova, J.; Terpakova, E. Effect of hemp shive sizes on mechanical properties of lightweight fibrous composites. Procedia Eng. 2012, 42, 496–500. [Google Scholar] [CrossRef]
- Pierre, T.; Colinart, T.; Glouannec, P. Measurement of Thermal Properties of Biosourced Building Materials. Int. J. Thermophys. 2014, 35, 1832–1852. [Google Scholar] [CrossRef]
- Collet, F.; Chamoin, J.; Pretot, S.; Lanos, C. Comparison of a hygric behaviour of three hemp concretes. Energy Build. 2013, 62, 294–303. [Google Scholar] [CrossRef]
- De Bruijn, P.; Johansson, P. Moisture Fixation and Thermal Properties of Lime-Hemp Concrete. Constr. Build. Mater. 2013, 47, 1235–1242. [Google Scholar] [CrossRef]
- Abdellatef, Y.; Khan, M.A.; Khan, A.; Alam, M.I.; Kavgic, M. Mechanical, Thermal, and Moisture Buffering Properties of Novel Insulating Hemp-Lime Composite Building Materials. Materials 2020, 13, 5000. [Google Scholar] [CrossRef]
- Abdellatef, Y.; Kavgic, M. Thermal, Microstructural and Numerical Analysis of Hempcrete-Microencapsulated Phase Change Material Composites. Appl. Therm. Eng. 2020, 178, 115520. [Google Scholar] [CrossRef]
- EN 459-1:2015; Building Lime—Part 1: Definitions, Specifications and Conformity Criteria. European Committee for Standardization: Brussels, Belgium, 2015.
- Available online: www.fr.weber/en/facades-neuves/projet-de-renovation/chanvribat (accessed on 15 May 2025).
- Available online: www.fr.weber/facades-neuves/projet-de-renovation/tradical-thermo (accessed on 15 May 2025).
- Available online: www.fr.weber/tradicalr (accessed on 15 May 2025).
- Sheridan, J.; Sonebi, M.; Taylor, S.; Amziane, S. Effect of Linseed Oil and Metakaolin on the Mechanical, Thermal and Transport Properties of Hemp-Lime Concrete. Acad. J. Civ. Eng. 2017, 35, 73–80. [Google Scholar]
- EN 12664:2002; Thermal Performance of Building Materials and Products—Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods—Dry and Moist Products of Medium and Low Thermal Resistance. European Committee for Standardization: Brussels, Belgium, 2002.
- EN ISO 12572:2016; Hygrothermal Performance of Building Materials and Products—Determination of Water Vapour Transmission Properties—Cup Method. European Committee for Standardization: Brussels, Belgium, 2016.

















| Mix Symbol | Hemp/Binder/Water Ratio by Mass | Lowest Initial Volumetric Density (kg/m3) | Highest Initial Volumetric Density (kg/m3) | 
|---|---|---|---|
| R (roof) | 1:1:2.15 | 400 | 640 | 
| W (wall) | 1:1.8:3 | 600 | 870 | 
| F (floor) | 1:2.25:4 | 690 | 930 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gołębiewski, M.; Pietruszka, B.; Piątkiewicz, W.; Kubiś, M.; Oleksiienko, O. Compressive Strength, Thermal Conductivity, Vapor Permeability and Specific Heat of Hemp-Lime Composites Varying in Density for Wall, Roof and Floor Applications. Materials 2025, 18, 4958. https://doi.org/10.3390/ma18214958
Gołębiewski M, Pietruszka B, Piątkiewicz W, Kubiś M, Oleksiienko O. Compressive Strength, Thermal Conductivity, Vapor Permeability and Specific Heat of Hemp-Lime Composites Varying in Density for Wall, Roof and Floor Applications. Materials. 2025; 18(21):4958. https://doi.org/10.3390/ma18214958
Chicago/Turabian StyleGołębiewski, Michał, Barbara Pietruszka, Wojciech Piątkiewicz, Michał Kubiś, and Olena Oleksiienko. 2025. "Compressive Strength, Thermal Conductivity, Vapor Permeability and Specific Heat of Hemp-Lime Composites Varying in Density for Wall, Roof and Floor Applications" Materials 18, no. 21: 4958. https://doi.org/10.3390/ma18214958
APA StyleGołębiewski, M., Pietruszka, B., Piątkiewicz, W., Kubiś, M., & Oleksiienko, O. (2025). Compressive Strength, Thermal Conductivity, Vapor Permeability and Specific Heat of Hemp-Lime Composites Varying in Density for Wall, Roof and Floor Applications. Materials, 18(21), 4958. https://doi.org/10.3390/ma18214958
 
        

 
       