Advances in MXene Materials: Fabrication, Properties, and Applications
Abstract
1. Introduction
2. Synthesis and Manufacturing of MXenes
2.1. Top-Down and Bottom-Up Synthesis of MXenes
2.2. Etching Techniques and Layer Exfoliation
2.2.1. Conventional Etching Methods
2.2.2. Advanced Etching Techniques
- Electrochemical etching applies 1–5 V potentials in mild electrolytes like NH4Cl, achieving 90% Al removal without fluoride byproducts while enabling real-time process monitoring. Typical electrochemical etching experiments in the literature employ voltages of ~1.0–2.0 V at ~30–40 °C for ~24–36 h, followed by water rinsing and mild sonication [27]. This method shows promise for scaling, with pilot systems demonstrating 100 g/batch capacity [28].
- Molten salt etching utilizes ZnCl2/NaCl eutectic mixtures at 500–700 °C to eliminate fluoride use, producing MXenes with unique Cl terminations that enhance stability in aqueous environments [29]. The solid residue is subsequently washed with 1 M HCl and DI water to remove unreacted salts and neutralized to pH 7 [30].
- Hydrothermal alkaline etching employs NaOH solutions at 150–200 °C to create OH-rich surfaces ideal for biomedical applications, though with reduced crystallinity compared to HF-etched materials [31]. Typical yields range from 25–35%, depending on NaOH concentration and reaction temperature.
2.2.3. Layer Exfoliation
- Intercalation with organic compounds like TMAOH or DMSO expands interlayer spacing from 0.3 nm to > 1 nm, weakening van der Waals forces.
- Sonication (30–60 min at 50–100 W) provides mechanical energy to separate layers while minimizing defect formation. Probe sonication promotes higher yields of monolayer MXene flakes (up to ~70%), whereas bath sonication generally produces larger flakes, but with lower monolayer content. This behavior is consistent with observations in the exfoliation of Ti3C2Tx and other 2D materials [25,32].
- Centrifugation (3000–5000 rpm) isolates size-specific fractions, enabling selection of monolayer-rich suspensions for high-performance applications. The resulting MXene colloids typically show concentrations of 2–5 mg/mL and lateral flake sizes of 0.5–5 μm, depending on sonication intensity [33].
2.3. Scale-Up and Challenges in Industrial Production
3. Structural and Physical Properties of MXenes
- Crystallographic architecture: How the hexagonal P63/mmc symmetry and interlayer spacing (0.3–1.2 nm) enable unique phenomena like anisotropic conduction and selective ion intercalation.
- Electronic and optical phenomena: The interplay between transition metal d-orbitals and surface terminations produces exceptional optoelectronic properties, from infrared plasmonics to quantum confinement effects.
- Thermal and chemical behavior: Remarkable stability ranges (up to 1000 °C in inert atmospheres) and reactive sites that facilitate applications from high-temperature coatings to catalytic converters.
- Surface engineering: How termination groups dictate interfacial interactions, from superhydrophilic membranes to corrosion-resistant coatings, with atomic-scale precision.
3.1. Crystallographic Structure and Layered Morphology
3.1.1. Structural Transformation from MAX Phases
3.1.2. Interlayered Spacing and Tunability
3.1.3. Role of Defects in Performance
3.1.4. Thickness and Layer Control
3.2. Electronic, Optical, and Mechanical Properties
3.2.1. Exceptional Electrical Conductivity
3.2.2. Tunable Optical Behavior
3.2.3. Remarkable Mechanical Performance
3.3. Thermal Stability and Chemical Reactivity
3.3.1. Thermal Stability
3.3.2. Thermal Conductivity
3.3.3. Tunable Chemical Reactivity
3.4. Surface Chemistry and Hydrophilicity
3.4.1. Engineered Surface Terminations
3.4.2. Controlled Hydrophilicity
3.4.3. Tunable Surface Chemistry
4. Applications of MXene Materials
4.1. Energy Storage in Batteries and Supercapacitors
4.2. Electromagnetic Interference (EMI) Shielding
4.3. Applications in Sensing and Biomedical Devices
4.4. Water Purification and Environmental Remediation
4.5. Emerging Applications: Catalysis and Photothermal Therapy
5. Challenges and Future Directions
5.1. Scalability and Cost-Efficiency in Manufacturing
5.2. Stability and Degradation Under Operational Conditions
5.3. Environmental Impacts and Safety Concerns
5.4. Integration with Other Materials and Technologies
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Salim, O.; Mahmoud, K.A.; Pant, K.K.; Joshi, R.K. Introduction to MXenes: Synthesis and Characteristics. Mater. Today Chem. 2019, 14, 100191. [Google Scholar] [CrossRef]
- Jose, S.A.; Ralls, A.M.; Kasar, A.K.; Antonitsch, A.; Neri, D.C.; Image, J.; Meyer, K.; Zhang, G.; Menezes, P.L. MXenes: Manufacturing, Properties, and Tribological Insights. Materials 2025, 18, 3927. [Google Scholar] [CrossRef]
- Khazaei, M.; Mishra, A.; Venkataramanan, N.S.; Singh, A.K.; Yunoki, S. Recent Advances in MXenes: From Fundamentals to Applications. Curr. Opin. Solid State Mater. Sci. 2019, 23, 164–178. [Google Scholar] [CrossRef]
- Rahman, U.U.; Humayun, M.; Ghani, U.; Usman, M.; Ullah, H.; Khan, A.; El-Metwaly, N.M.; Khan, A. MXenes as Emerging Materials: Synthesis, Properties, and Applications. Molecules 2022, 27, 4909. [Google Scholar] [CrossRef]
- Protyai, M.I.H.; Rashid, A.B. A Comprehensive Overview of Recent Progress in MXene-Based Polymer Composites: Their Fabrication Processes, Advanced Applications, and Prospects. Heliyon 2024, 10, e37030. [Google Scholar] [CrossRef] [PubMed]
- Verger, L.; Xu, C.; Natu, V.; Cheng, H.-M.; Ren, W.; Barsoum, M.W. Overview of the Synthesis of MXenes and Other Ultrathin 2D Transition Metal Carbides and Nitrides. Curr. Opin. Solid State Mater. Sci. 2019, 23, 149–163. [Google Scholar] [CrossRef]
- Chaudhari, N.K.; Jin, H.; Kim, B.; San Baek, D.; Joo, S.H.; Lee, K. MXene: An Emerging Two-Dimensional Material for Future Energy Conversion and Storage Applications. J. Mater. Chem. A 2017, 5, 24564–24579. [Google Scholar] [CrossRef]
- Saini, H.; Srinivasan, N.; Šedajová, V.; Majumder, M.; Dubal, D.P.; Otyepka, M.; Zbořil, R.; Kurra, N.; Fischer, R.A.; Jayaramulu, K. Emerging MXene@Metal–Organic Framework Hybrids: Design Strategies toward Versatile Applications. ACS Nano 2021, 15, 18742–18776. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.A.; Prakash, P.; Krithiga, T.; Amarnath, D.J.; Premkumar, J.; Rajamohan, N.; Vasseghian, Y.; Saravanan, P.; Rajasimman, M. Methods of Synthesis, Characteristics, and Environmental Applications of MXene: A Comprehensive Review. Chemosphere 2022, 286, 131607. [Google Scholar] [CrossRef]
- Zhan, X.; Si, C.; Zhou, J.; Sun, Z. MXene and MXene-Based Composites: Synthesis, Properties and Environment-Related Applications. Nanoscale Horiz. 2020, 5, 235–258. [Google Scholar] [CrossRef]
- Oyehan, T.A.; Salami, B.A.; Abdulrasheed, A.A.; Hambali, H.U.; Gbadamosi, A.; Valsami-Jones, E.; Saleh, T.A. MXenes: Synthesis, Properties, and Applications for Sustainable Energy and Environment. Appl. Mater. Today 2023, 35, 101993. [Google Scholar] [CrossRef]
- Alrasheedi, N.H.; Varshini, P.; Uzorka, A.; Shanmugan, S. Impact of Microwave Irradiation on the Thermophysical and Energy Storage Properties of MXene-Ag-Syzygium Cumini Dye Nanofluids for Solar Distillation. Energy Nexus 2025, 19, 100525. [Google Scholar] [CrossRef]
- Lim, K.R.G.; Shekhirev, M.; Wyatt, B.C.; Anasori, B.; Gogotsi, Y.; Seh, Z.W. Fundamentals of MXene Synthesis. Nat. Synth. 2022, 1, 601–614. [Google Scholar] [CrossRef]
- Thakur, A.; Chandran, B.S.N.; Davidson, K.; Bedford, A.; Fang, H.; Im, Y.; Kanduri, V.; Wyatt, B.C.; Nemani, S.K.; Poliukhova, V.; et al. Step-by-Step Guide for Synthesis and Delamination of Ti3C2Tx MXene. Small Methods 2023, 7, 2300030. [Google Scholar] [CrossRef]
- Shuck, C.E.; Sarycheva, A.; Anayee, M.; Levitt, A.; Zhu, Y.; Uzun, S.; Balitskiy, V.; Zahorodna, V.; Gogotsi, O.; Gogotsi, Y. Scalable Synthesis of Ti3C2Tx MXene. Adv. Eng. Mater. 2020, 22, 1901241. [Google Scholar] [CrossRef]
- Shen, B.; Huang, H.; Liu, H.; Jiang, Q.; He, H. Bottom-up Construction of Three-Dimensional Porous MXene/Nitrogen-Doped Graphene Architectures as Efficient Hydrogen Evolution Electrocatalysts. Int. J. Hydrogen Energy 2021, 46, 29984–29993. [Google Scholar] [CrossRef]
- Amrillah, T.; Abdullah, C.A.C.; Hermawan, A.; Sari, F.N.I.; Alviani, V.N. Towards Greener and More Sustainable Synthesis of MXenes: A Review. Nanomaterials 2022, 12, 4280. [Google Scholar] [CrossRef]
- Rouhi, S.; Bay, M.; Aydin, O.; Sicim, E.S.; Ay, F.; Perkgoz, N.K. Large-Area Growth of Mo2C Thin Films and MXene Structures via the PVD–CVD Hybrid Technique. New J. Chem. 2025, 49, 10194–10204. [Google Scholar] [CrossRef]
- Li, S.; Xu, Z.; Meng, R.; Wen, E.; Peng, Q. MXene-Based Functional Nanomaterials and Their Applications in Cancer Diagnosis and Therapy. Precis. Med. Eng. 2025, 2, 100029. [Google Scholar] [CrossRef]
- Mim, M.; Habib, K.; Farabi, S.N.; Ali, S.A.; Zaed, M.A.; Younas, M.; Rahman, S. MXene: A Roadmap to Sustainable Energy Management, Synthesis Routes, Stabilization, and Economic Assessment. ACS Omega 2024, 9, 32350–32393. [Google Scholar] [CrossRef] [PubMed]
- Keshmiri, N.; Alaghehmand, H.; Mokhtarpour, F. Effect of Hydrofluoric Acid Surface Treatments on Surface Roughness and Three-Point Flexural Strength of Suprinity Ceramic. Front. Dent. 2020, 17, 22. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef] [PubMed]
- Gogotsi, Y.; Huang, Q. MXenes: Two-Dimensional Building Blocks for Future Materials and Devices. ACS Nano 2021, 15, 5775–5780. [Google Scholar] [CrossRef] [PubMed]
- Ghidiu, M.; Lukatskaya, M.R.; Zhao, M.-Q.; Gogotsi, Y.; Barsoum, M.W. Conductive Two-Dimensional Titanium Carbide ‘Clay’ with High Volumetric Capacitance. Nature 2014, 516, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for Synthesis and Processing of 2D Titanium Carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644. [Google Scholar] [CrossRef]
- Srivastava, P.; Mishra, A.; Mizuseki, H.; Lee, K.-R.; Singh, A.K. Mechanistic Insight into the Chemical Exfoliation and Functionalization of Ti3C2 MXene. ACS Appl. Mater. Interfaces 2016, 8, 24256–24264. [Google Scholar] [CrossRef]
- Chan, K.C.; Guan, X.; Zhang, T.; Lin, K.; Huang, Y.; Lei, L.; Georgantas, Y.; Gogotsi, Y.; Bissett, M.A.; Kinloch, I.A. The Fabrication of Ti3C2 and Ti3CN MXenes by Electrochemical Etching. J. Mater. Chem. A 2024, 12, 25165–25175. [Google Scholar] [CrossRef]
- Mussa, N.-S.; Askaruly, K.; Bexeitova, K.; Azat, S.; Toshtay, K. Recent Advancements in MXene-Based Catalysts: Synthesis, Characterization, and Applications in Sustainable Energy Production. Carbon Trends 2025, 20, 100551. [Google Scholar] [CrossRef]
- Kruger, D.D.; García, H.; Primo, A. Molten Salt Derived MXenes: Synthesis and Applications. Adv. Sci. 2024, 11, 2307106. [Google Scholar] [CrossRef]
- Yoon, J.; Kim, S.; Park, K.H.; Lee, S.; Kim, S.J.; Lee, H.; Oh, T.; Koo, C.M. Biocompatible and Oxidation-Resistant Ti3C2Tx MXene with Halogen-Free Surface Terminations. Small Methods 2023, 7, 2201579. [Google Scholar] [CrossRef]
- Khan, K.; Tareen, A.K.; Ahmad, W.; Hussain, I.; Chaudhry, M.U.; Mahmood, A.; Khan, M.F.; Zhang, H.; Xie, Z. Recent Advances in Non-Ti MXenes: Synthesis, Properties, and Novel Applications. Adv. Sci. 2024, 11, 2303998. [Google Scholar] [CrossRef] [PubMed]
- Gogotsi, Y.; Anasori, B. The Rise of MXenes. ACS Nano 2019, 13, 8491–8494. [Google Scholar] [CrossRef] [PubMed]
- Onat, B.; Taymaz, B.H.; Eskizeybek, V.; Kamış, H. Optimized Size Sorting of MXene Particles via Centrifugal Sedimentation: A Practical Approach Using an Empirical Model and Image Processing Technique. Part. Sci. Technol. 2025, 43, 756–766. [Google Scholar] [CrossRef]
- Gentile, A.; Marchionna, S.; Balordi, M.; Pagot, G.; Ferrara, C.; Noto, V.D.; Ruffo, R. Critical Analysis of MXene Production with In-Situ HF Forming Agents for Sustainable Manufacturing. ChemElectroChem 2022, 9, e202200891. [Google Scholar] [CrossRef]
- AL-Zahrani, A.A.; Kochkar, H. Advancements in MXene Synthesis: Novel Methods and Emerging Applications. J. Alloys Compd. 2025, 1039, 183247. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, G.; Chao, M.; Zhao, J.; Wang, W.; Yan, J.; Wang, Q.; Yang, R. Molten Salts Etching Driven In-Situ Construction of MOF-Derived Co/Co–N–C/MXene toward Oxygen Reduction Catalysis. Energy Fuels 2025, 39, 8283–8290. [Google Scholar] [CrossRef]
- Kiran, H.; Ali, A.B.M.; Ashraf, R.; Tahir, M.B.; Nasir, M.; Hasnain, N.; Ullah, M.F.; Abduvalieva, D.; Batool, N. Comparative Study of Ti3C2Tx MXene Synthesized via HF and LiF-HCl Etching: Structural, Optical, and Photocatalytic Insights. J. Inorg. Organomet. Polym. Mater. 2025. [Google Scholar] [CrossRef]
- Prakash, N.J.; Kandasubramanian, B. Nanocomposites of MXene for Industrial Applications. J. Alloys Compd. 2021, 862, 158547. [Google Scholar] [CrossRef]
- Lamiel, C.; Hussain, I.; Ogunsakin, O.R.; Zhang, K. MXene in Core–Shell Structures: Research Progress and Future Prospects. J. Mater. Chem. A 2022, 10, 14247–14272. [Google Scholar] [CrossRef]
- Long, M.Q.; Tang, K.K.; Xiao, J.; Li, J.Y.; Chen, J.; Gao, H.; Chen, W.H.; Liu, C.T.; Liu, H. Recent Advances on MXene Based Materials for Energy Storage Applications. Mater. Today Sustain. 2022, 19, 100163. [Google Scholar] [CrossRef]
- Kim, S.; Jo, H.; Yun, J.; Lee, J.-W.; Cho, J.; Kang, K.; Lim, H.-D. Sustainable and Eco-Friendly Syntheses of Green MXenes for Advanced Battery Applications. Nano Converg. 2025, 12, 39. [Google Scholar] [CrossRef] [PubMed]
- Hansen, S.F.; Nielsen, M.B.; Skjolding, L.M.; Kaur, J.; Desivyana, N.; Hermansson, F.; Bird, J.; Barg, S.; Khort, A.; Odnevall, I.; et al. Maximizing the Safety and Sustainability of MXenes. Sci. Rep. 2024, 14, 31030. [Google Scholar] [CrossRef] [PubMed]
- Pang, S.-Y.; Io, W.F.; Wong, L.-W.; Lao, X.; Bai, Q.; Chan, K.L.; Zhao, J.; Hao, J. Fluoride-Free Molten Salt Hydrate-Assisted Synthesis of MXene in Air Down to 150 °C. Adv. Funct. Mater. 2025, 35, 2504864. [Google Scholar] [CrossRef]
- Palladino, D.L.; Baino, F. MXenes: Properties, Applications, and Potential in 3D Printing. Ceramics 2025, 8, 64. [Google Scholar] [CrossRef]
- Gouveia, J.D.; Gomes, J.R.B. Structural and Electronic Properties of the Titanium Carbide MXene with Variable Sublattice Oxygen Composition. Surf. Interfaces 2024, 46, 103920. [Google Scholar] [CrossRef]
- Syamsai, R.; Kollu, P.; Jeong, S.K.; Grace, A.N. Synthesis and Properties of 2D-Titanium Carbide MXene Sheets towards Electrochemical Energy Storage Applications. Ceram. Int. 2017, 43, 13119–13126. [Google Scholar] [CrossRef]
- Zhang, W.; Li, S.; Fan, X.; Zhang, X.; Fan, S.; Bei, G. Two-Dimensional Carbonitride MXenes: From Synthesis to Properties and Applications. Carbon Energy 2024, 6, e609. [Google Scholar] [CrossRef]
- Zhang, T.; Shuck, C.E.; Shevchuk, K.; Anayee, M.; Gogotsi, Y. Synthesis of Three Families of Titanium Carbonitride MXenes. J. Am. Chem. Soc. 2023, 145, 22374–22383. [Google Scholar] [CrossRef]
- Liang, K.; Tabassum, A.; Kothakonda, M.; Zhang, X.; Zhang, R.; Kenney, B.; Koplitz, B.D.; Sun, J.; Naguib, M. Two-Dimensional Titanium Carbonitride MXene as a Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction. Mater. Rep. Energy 2022, 2, 100075. [Google Scholar] [CrossRef]
- Rasheed, P.A.; Pandey, R.P.; Banat, F.; Hasan, S.W. Recent Advances in Niobium MXenes: Synthesis, Properties, and Emerging Applications. Matter 2022, 5, 546–572. [Google Scholar] [CrossRef]
- Ponnalagar, D.; Hang, D.-R.; Islam, S.E.; Liang, C.-T.; Chou, M.M.C. Recent Progress in Two-Dimensional Nb2C MXene for Applications in Energy Storage and Conversion. Mater. Des. 2023, 231, 112046. [Google Scholar] [CrossRef]
- Gao, Z.; Shi, D.; Xu, J.; Hai, T.; Zhao, Y.; Qin, M.; Li, J. Vanadium-Based MXenes: Types, Synthesis, and Recent Advances in Supercapacitor Applications. Nanomaterials 2025, 15, 1038. [Google Scholar] [CrossRef]
- Jenitha, M.; Durgalakshmi, D.; Balakumar, S.; Rakkesh, R.A. Vanadium-Based MXenes: Synthesis, Structural Insights, and Electrochemical Properties for Zn-Ion Battery Applications: A Beginner’s Guide. Emergent Mater. 2025, 8, 1311–1336. [Google Scholar] [CrossRef]
- Syamsai, R.; Grace, A.N. Synthesis, Properties and Performance Evaluation of Vanadium Carbide MXene as Supercapacitor Electrodes. Ceram. Int. 2020, 46, 5323–5330. [Google Scholar] [CrossRef]
- Hussain, I.; Amara, U.; Bibi, F.; Hanan, A.; Lakhan, M.N.; Soomro, I.A.; Khan, A.; Shaheen, I.; Sajjad, U.; Rani, G.M.; et al. Mo-Based MXenes: Synthesis, Properties, and Applications. Adv. Colloid Interface Sci. 2024, 324, 103077. [Google Scholar] [CrossRef] [PubMed]
- Seh, Z.W.; Fredrickson, K.D.; Anasori, B.; Kibsgaard, J.; Strickler, A.L.; Lukatskaya, M.R.; Gogotsi, Y.; Jaramillo, T.F.; Vojvodic, A. Two-Dimensional Molybdenum Carbide (MXene) as an Efficient Electrocatalyst for Hydrogen Evolution. ACS Energy Lett. 2016, 1, 589–594. [Google Scholar] [CrossRef]
- VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The World of Two-Dimensional Carbides and Nitrides (MXenes). Science 2021, 372, eabf1581. [Google Scholar] [CrossRef] [PubMed]
- Elsa, G.; Hanan, A.; Walvekar, R.; Numan, A.; Khalid, M. Zirconium–Based MXenes: Synthesis, Properties, Applications, and Prospects. Coord. Chem. Rev. 2025, 526, 216355. [Google Scholar] [CrossRef]
- Meng, Q.; Ma, J.; Zhang, Y.; Li, Z.; Hu, A.; Kai, J.-J.; Fan, J. Theoretical Investigation of Zirconium Carbide MXenes as Prospective High Capacity Anode Materials for Na-Ion Batteries. J. Mater. Chem. A 2018, 6, 13652–13660. [Google Scholar] [CrossRef]
- Zhou, J.; Zha, X.; Zhou, X.; Chen, F.; Gao, G.; Wang, S.; Shen, C.; Chen, T.; Zhi, C.; Eklund, P.; et al. Synthesis and Electrochemical Properties of Two-Dimensional Hafnium Carbide. ACS Nano 2017, 11, 3841–3850. [Google Scholar] [CrossRef]
- Zeng, Q.; Peng, J.; Oganov, A.R.; Zhu, Q.; Xie, C.; Zhang, X.; Dong, D.; Zhang, L.; Cheng, L. Prediction of Stable Hafnium Carbides: Stoichiometries, Mechanical Properties, and Electronic Structure. Phys. Rev. B 2013, 88, 214107. [Google Scholar] [CrossRef]
- Li, M.; Xu, L.; Guo, M.; Shang, H.; Luo, X.; Ma, Y. Recent Advances in Tantalum Carbide MXenes: Synthesis, Structure, Properties, and Novel Applications. Crystals 2025, 15, 558. [Google Scholar] [CrossRef]
- Dong, L.; Chu, H.; Li, Y.; Ma, X.; Pan, H.; Zhao, S.; Li, D. Surface Functionalization of Ta4C3 MXene for Broadband Ultrafast Photonics in the Near-Infrared Region. Appl. Mater. Today 2022, 26, 101341. [Google Scholar] [CrossRef]
- Yadav, M.; Kumar, M.; Sharma, A. Progress in Niobium-Derived MXenes: Synthesis, Properties and Applications. CrystEngComm 2025, 27, 3180–3213. [Google Scholar] [CrossRef]
- Kewate, O.J.; Hussain, I.; Tyagi, N.; Saxena, S.; Zhang, K.; Rajamansingh, E.G.; Chinnappan, N.; Joshi, H.; Punniyakoti, S. Nb-Based MXenes: Structures, Properties, Synthesis, and Application Towards Supercapacitors. J. Energy Storage 2024, 94, 112445. [Google Scholar] [CrossRef]
- Guan, G.; Guo, F. A Review of Nb2CTx MXene: Synthesis, Properties and Applications. Batteries 2023, 9, 235. [Google Scholar] [CrossRef]
- Venkateshalu, S.; Cherusseri, J.; Karnan, M.; Kumar, K.S.; Kollu, P.; Sathish, M.; Thomas, J.; Jeong, S.K.; Grace, A.N. New Method for the Synthesis of 2D Vanadium Nitride (MXene) and Its Application as a Supercapacitor Electrode. ACS Omega 2020, 5, 17983–17992. [Google Scholar] [CrossRef] [PubMed]
- Rafique, M.; Anwar, S.; Irshad, M.; Khan, M.I.; Tahir, M.B.; Nabi, G.; Assiri, M.A. Novel Synthesis and Electrochemical Performance of 2D Molybdenum Nitride (MXene) for Supercapacitor Application. J. Energy Storage 2024, 103, 114354. [Google Scholar] [CrossRef]
- Champagne, A.; Charlier, J.-C. Physical Properties of 2D MXenes: From a Theoretical Perspective. J. Phys. Mater. 2021, 3, 032006. [Google Scholar] [CrossRef]
- Jiang, X.; Kuklin, A.V.; Baev, A.; Ge, Y.; Ågren, H.; Zhang, H.; Prasad, P.N. Two-Dimensional MXenes: From Morphological to Optical, Electric, and Magnetic Properties and Applications. Phys. Rep. 2020, 848, 1–58. [Google Scholar] [CrossRef]
- Liang, C.; Meng, Y.; Zhang, Y.; Zhang, H.; Wang, W.; Lu, M.; Wang, G. Insights into the Impact of Interlayer Spacing on MXene-Based Electrodes for Supercapacitors: A Review. J. Energy Storage 2023, 65, 107341. [Google Scholar] [CrossRef]
- Ali, M.; Alqahtani, S.M. Role of Defects in Graphene-Passivated Ti3C2 MXene for Energy Conversion and Storage Applications: A First-Principles Study. ACS Appl. Energy Mater. 2023, 6, 7535–7544. [Google Scholar] [CrossRef]
- Tan, B.; Guo, D.; Tao, Z.; Chen, Z.; Lv, Z.; Wu, G.; Lin, Y. Ultrathin and Flexible Polyimide/Ti3C2TX MXene Composite Films for Electromagnetic Interference Shielding with Harsh Environment Tolerance. J. Mater. Chem. C 2024, 12, 276–285. [Google Scholar] [CrossRef]
- Zhou, J.; Yu, J.; Bai, D.; Liu, H.; Li, L. Mechanically Robust Flexible Multilayer Aramid Nanofibers and MXene Film for High-Performance Electromagnetic Interference Shielding and Thermal Insulation. Nanomaterials 2021, 11, 3041. [Google Scholar] [CrossRef]
- Echols, I.J.; An, H.; Yun, J.; Sarang, K.T.; Oh, J.-H.; Habib, T.; Zhao, X.; Cao, H.; Holta, D.E.; Radovic, M.; et al. Electronic and Optical Property Control of Polycation/MXene Layer-by-Layer Assemblies with Chemically Diverse MXenes. Langmuir 2021, 37, 11338–11350. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y. Applications and Perspectives of Ti3C2Tx MXene in Electrochemical Energy Storage Systems. Int. J. Electrochem. Sci. 2025, 20, 100948. [Google Scholar] [CrossRef]
- Lee, S.; Kim, E.H.; Yu, S.; Kim, H.; Park, C.; Lee, S.W.; Han, H.; Jin, W.; Lee, K.; Lee, C.E.; et al. Polymer-Laminated Ti3C2TX MXene Electrodes for Transparent and Flexible Field-Driven Electronics. ACS Nano 2021, 15, 8940–8952. [Google Scholar] [CrossRef]
- Jia, L.; Zhou, S.; Ahmed, A.; Yang, Z.; Liu, S.; Wang, H.; Li, F.; Zhang, M.; Zhang, Y.; Sun, L. Tuning MXene Electrical Conductivity towards Multifunctionality. Chem. Eng. J. 2023, 475, 146361. [Google Scholar] [CrossRef]
- Zhang, Y.; Ruan, K.; Guo, Y.; Gu, J. Recent Advances of MXenes-Based Optical Functional Materials. Adv. Photonics Res. 2023, 4, 2300224. [Google Scholar] [CrossRef]
- Mishra, R.K.; Sarkar, J.; Verma, K.; Chianella, I.; Goel, S.; Nezhad, H.Y. Exploring Transformative and Multifunctional Potential of MXenes in 2D Materials for Next-Generation Technology. Open Ceram. 2024, 18, 100596. [Google Scholar] [CrossRef]
- Qu, D.-Y.; Guo, F.-L.; Hou, W.-D.; Guan, T.; Fu, Y.-T.; Hao, J.; Peng, C.-Y.; Zhang, Y.-C.; Li, Y.-Q.; Liu, S.-T.; et al. Effects of Introducing MXene Nanosheets on the Mechanical Properties of Carbon Fiber Reinforced Epoxy Composite at Cryogenic Temperature. Compos. Sci. Technol. 2025, 263, 111102. [Google Scholar] [CrossRef]
- Lee, G.S.; Yun, T.; Kim, H.; Kim, I.H.; Choi, J.; Lee, S.H.; Lee, H.J.; Hwang, H.S.; Kim, J.G.; Kim, D.; et al. Mussel Inspired Highly Aligned Ti3C2Tx MXene Film with Synergistic Enhancement of Mechanical Strength and Ambient Stability. ACS Nano 2020, 14, 11722–11732. [Google Scholar] [CrossRef]
- Yu, L.; Xu, L.; Lu, L.; Alhalili, Z.; Zhou, X. Thermal Properties of MXenes and Relevant Applications. ChemPhysChem 2022, 23, e202200203. [Google Scholar] [CrossRef]
- Luo, Y.; Xie, Y.; Jiang, H.; Chen, Y.; Zhang, L.; Sheng, X.; Xie, D.; Wu, H.; Mei, Y. Flame-Retardant and Form-Stable Phase Change Composites Based on MXene with High Thermostability and Thermal Conductivity for Thermal Energy Storage. Chem. Eng. J. 2021, 420, 130466. [Google Scholar] [CrossRef]
- Liu, R.; Li, W. High-Thermal-Stability and High-Thermal-Conductivity Ti3C2Tx MXene/Poly(Vinyl Alcohol) (PVA) Composites. ACS Omega 2018, 3, 2609–2617. [Google Scholar] [CrossRef]
- Gao, J.; Xuan, X.; Tang, Y.; Xie, Y.; Bi, Z.; Zou, J.; Li, L.; Yang, C. Thermal Stability of MXene: Current Status and Future Perspectives. Small 2025, 21, e05881. [Google Scholar] [CrossRef]
- Cui, Y.; Zhu, J.; Tong, H.; Zou, R. Advanced Perspectives on MXene Composite Nanomaterials: Types Synthetic Methods, Thermal Energy Utilization and 3D-Printed Techniques. iScience 2023, 26, 105824. [Google Scholar] [CrossRef]
- Hu, X.; Fan, Q.; Wang, S.; Chen, Y.; Wang, D.; Chen, K.; Ge, F.; Zhou, W.; Liang, K. Two-Dimensional MXenes: Innovative Materials for Efficient Thermal Management and Safety Solutions. Research 2024, 7, 0542. [Google Scholar] [CrossRef] [PubMed]
- Bibi, F.; Hanan, A.; Soomro, I.A.; Numan, A.; Khalid, M. Double Transition Metal MXenes for Enhanced Electrochemical Applications: Challenges and Opportunities. EcoMat 2024, 6, e12485. [Google Scholar] [CrossRef]
- Ampong, D.N.; Agyekum, E.; Agyemang, F.O.; Mensah-Darkwa, K.; Andrews, A.; Kumar, A.; Gupta, R.K. MXene: Fundamentals to Applications in Electrochemical Energy Storage. Discov. Nano 2023, 18, 3. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Yu, B.; Zhu, J.; Li, K.; Tian, S. Hierarchical ZnO/MXene (Nb2C and V2C) Heterostructure with Efficient Electron Transfer for Enhanced Photocatalytic Activity. Appl. Surf. Sci. 2022, 590, 153095. [Google Scholar] [CrossRef]
- Amani, A.M.; Abbasi, M.; Najdian, A.; Mohamadpour, F.; Kasaee, S.R.; Kamyab, H.; Chelliapan, S.; Ardeshiri, H.; Tayebi, L.; Vafa, E.; et al. A Potentially Fruitful Path toward a Cleaner and Safer Environment: MXenes Uses in Environmental Remediation. Ecotoxicol. Environ. Saf. 2025, 297, 118222. [Google Scholar] [CrossRef]
- Natu, V.; Barsoum, M.W. MXene Surface Terminations: A Perspective. J. Phys. Chem. C 2023, 127, 20197–20206. [Google Scholar] [CrossRef]
- Rems, E.; Hu, Y.-J.; Gogotsi, Y.; Dominko, R. Pivotal Role of Surface Terminations in MXene Thermodynamic Stability. Chem. Mater. 2024, 36, 10295–10306. [Google Scholar] [CrossRef]
- Malaki, M.; Varma, R.S. Wetting of MXenes and Beyond. Nano-Micro Lett. 2023, 15, 116. [Google Scholar] [CrossRef]
- Song, C.; Chao, M.; Li, L.; Luo, C.; Chen, X.; Yan, L. Silane-Modified MXene Nanosheets for Improved Anticorrosive Properties of Epoxy Coatings: A Combined Experimental and Computational Study. ACS Appl. Nano Mater. 2024, 7, 20509–20522. [Google Scholar] [CrossRef]
- El-Demellawi, J.K.; Lopatin, S.; Yin, J.; Mohammed, O.F.; Alshareef, H.N. Tunable Multipolar Surface Plasmons in 2D Ti3C2Tx MXene Flakes. ACS Nano 2018, 12, 8485–8493. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.K.; Avinashi, S.K.; Fatima, Z.; Singh, R.; Gautam, C. Fabrication, Surface Morphology, and Energy Storage Performance of MXene-Based Materials for Metal-Ion Batteries: A Review. ACS Appl. Energy Mater. 2025, 8, 11813–11863. [Google Scholar] [CrossRef]
- Li, X.; Huang, Z.; Shuck, C.E.; Liang, G.; Gogotsi, Y.; Zhi, C. MXene Chemistry, Electrochemistry and Energy Storage Applications. Nat. Rev. Chem. 2022, 6, 389–404. [Google Scholar] [CrossRef]
- Aslam, M.K.; AlGarni, T.S.; Javed, M.S.; Shah, S.S.A.; Hussain, S.; Xu, M. 2D MXene Materials for Sodium Ion Batteries: A Review on Energy Storage. J. Energy Storage 2021, 37, 102478. [Google Scholar] [CrossRef]
- Prenger, K.; Sun, Y.; Ganeshan, K.; Al-Temimy, A.; Liang, K.; Dun, C.; Urban, J.J.; Xiao, J.; Petit, T.; van Duin, A.C.T.; et al. Metal Cation Pre-Intercalated Ti3C2Tx MXene as Ultra-High Areal Capacitance Electrodes for Aqueous Supercapacitors. ACS Appl. Energy Mater. 2022, 5, 9373–9382. [Google Scholar] [CrossRef]
- Sohan, A.; Banoth, P.; Aleksandrova, M.; Nirmala Grace, A.; Kollu, P. Review on MXene Synthesis, Properties, and Recent Research Exploring Electrode Architecture for Supercapacitor Applications. Int. J. Energy Res. 2021, 45, 19746–19771. [Google Scholar] [CrossRef]
- Jussambayev, M.; Shakenov, K.; Sultakhan, S.; Zhantikeyev, U.; Askaruly, K.; Toshtay, K.; Azat, S. MXenes for Sustainable Energy: A Comprehensive Review on Conservation and Storage Applications. Carbon Trends 2025, 19, 100471. [Google Scholar] [CrossRef]
- Ashfaq, R.G.; Arshad, M.; Siddique, S.; Abrar, A.; Shah, S.A.; Bulut, F.; Altin, S. Challenges and Recent Advancements in MXene-Based High-Capacity Electrodes for Future Generation Rechargeable Batteries. J. Energy Storage 2025, 132, 117654. [Google Scholar] [CrossRef]
- Awan, H.T.A.; Abdah, M.A.A.M.; Mehar, M.; Walvekar, R.; Chaudhary, V.; Khalid, M.; Khosla, A. MXene-Polymer Hybrid Composites for Advanced Energy Storage: Insights into Supercapacitors and Batteries. J. Energy Storage 2024, 95, 112449. [Google Scholar] [CrossRef]
- Akhter, R.; Maktedar, S.S. MXenes: A Comprehensive Review of Synthesis, Properties, and Progress in Supercapacitor Applications. J. Mater. 2023, 9, 1196–1241. [Google Scholar] [CrossRef]
- Bilibana, M.P. Electrochemical Properties of MXenes and Applications. Adv. Sens. Energy Mater. 2023, 2, 100080. [Google Scholar] [CrossRef]
- Kadam, S.A.; Kadam, K.P.; Pradhan, N.R. Advancements in 2D MXene-based Supercapacitor Electrodes: Synthesis, Mechanisms, Electronic Structure Engineering, Flexible Wearable Energy Storage for Real-World Applications, and Future Prospects. J. Mater. Chem. A 2024, 12, 17992–18046. [Google Scholar] [CrossRef]
- Zhai, Z.; Zhang, L.; Du, T.; Ren, B.; Xu, Y.; Wang, S.; Miao, J.; Liu, Z. A Review of Carbon Materials for Supercapacitors. Mater. Des. 2022, 221, 111017. [Google Scholar] [CrossRef]
- Ahmad, F.; Zahid, M.; Jamil, H.; Khan, M.A.; Atiq, S.; Bibi, M.; Shahbaz, K.; Adnan, M.; Danish, M.; Rasheed, F.; et al. Advances in Graphene-Based Electrode Materials for High-Performance Supercapacitors: A Review. J. Energy Storage 2023, 72, 108731. [Google Scholar] [CrossRef]
- Iqbal, A.; Sambyal, P.; Koo, C.M. 2D MXenes for Electromagnetic Shielding: A Review. Adv. Funct. Mater. 2020, 30, 2000883. [Google Scholar] [CrossRef]
- Mannafi, A.S.M.; Habib, K.; Ali, S.A.; Younas, M.; Bakthavatchalam, B.; Saha, B.B. MXene-Based Materials for Electromagnetic Interference Shielding: Fundamentals, Mechanisms, and Emerging Applications. Results Eng. 2025, 27, 107027. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Wu, N.; Han, M.; Liu, W.; Liu, J.; Zeng, Z. Diverse Structural Design Strategies of MXene-Based Macrostructure for High-Performance Electromagnetic Interference Shielding. Nano-Micro Lett. 2023, 15, 240. [Google Scholar] [CrossRef] [PubMed]
- Irfan, M.S.; Ali, M.A.; Khan, T.; Anwer, S.; Liao, K.; Umer, R. MXene and Graphene Coated Multifunctional Fiber Reinforced Aerospace Composites with Sensing and EMI Shielding Abilities. Compos. Part A Appl. Sci. Manuf. 2023, 165, 107351. [Google Scholar] [CrossRef]
- Kedambaimoole, V.; Harsh, K.; Rajanna, K.; Sen, P.; Nayak, M.M.; Kumar, S. MXene Wearables: Properties, Fabrication Strategies, Sensing Mechanism and Applications. Mater. Adv. 2022, 3, 3784–3808. [Google Scholar] [CrossRef]
- Kondarage, Y.G.; Naiduwawadu, A.; Wijesinghe, I.; Dharmasiri, C.D.H.; Firestein, K.L.; Liao, T.; Yan, C. Synthesis and Characterization of MXene/Nanocrystalline Cellulose Composite Thin Films for Enhanced Electromagnetic Interference Shielding. Compos. Part A Appl. Sci. Manuf. 2025, 195, 108957. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Park, S.; Hong, K.; Kim, Y.-K.; Choi, Y.-S.; Jeong, H.; Joo, Y.; Jang, S.G.; Kim, T.-W.; Lee, S.S. Layer-Structured Carbon Nanotube–Boron Nitride Nanotube Nanocomposites with Superior Multifunctional Shielding. ACS Appl. Mater. Interfaces 2025, 17, 55411–55422. [Google Scholar] [CrossRef]
- Wu, X.; Ma, P.; Sun, Y.; Du, F.; Song, D.; Xu, G. Application of MXene in Electrochemical Sensors: A Review. Electroanalysis 2021, 33, 1827–1851. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Hazra, A. MXene-Based Gas Sensors. J. Mater. Chem. C 2021, 9, 15735–15754. [Google Scholar] [CrossRef]
- Xu, B.; Zhi, C.; Shi, P. Latest Advances in MXene Biosensors. J. Phys. Mater. 2020, 3, 031001. [Google Scholar] [CrossRef]
- Gnanasekar, S.; He, X.; Nagay, B.E.; Xu, K.; Rao, X.; Duan, S.; Murugesan, S.; Barão, V.A.R.; Kang, E.-T.; Xu, L. Antibacterial MXenes: An Emerging Non-Antibiotic Paradigm for Surface Engineering of Orthopedic and Dental Implants. Bioact. Mater. 2025, 51, 150–176. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Kim, H. Recent Advances in MXene Gas Sensors: Synthesis, Composites, and Mechanisms. Npj 2D Mater. Appl. 2025, 9, 66. [Google Scholar] [CrossRef]
- Ihsanullah, I. Potential of MXenes in Water Desalination: Current Status and Perspectives. Nano-Micro Lett. 2020, 12, 72. [Google Scholar] [CrossRef]
- Zhou, P.; Navid, I.A.; Ma, Y.; Xiao, Y.; Wang, P.; Ye, Z.; Zhou, B.; Sun, K.; Mi, Z. Solar-to-Hydrogen Efficiency of More than 9% in Photocatalytic Water Splitting. Nature 2023, 613, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Meskher, H.; Thakur, A.K.; Hazra, S.K.; Ahamed, M.S.; Saleque, A.M.; Alsalhy, Q.F.; Shahzad, M.W.; Ivan, M.N.A.S.; Saha, S.; Lynch, I. Recent Advances in Applications of MXenes for Desalination, Water Purification and as an Antibacterial: A Review. Environ. Sci. Nano 2025, 12, 1012–1036. [Google Scholar] [CrossRef]
- Song, L.; Yang, Z.; Song, Q.; Hu, Q.; Lu, S.; Zhao, D.; Xie, W. Recent Progress in MXene-Based Materials for Water Treatment Application: A Review. J. Water Process Eng. 2025, 72, 107640. [Google Scholar] [CrossRef]
- Huang, L.; Ding, L.; Caro, J.; Wang, H. MXene-based Membranes for Drinking Water Production. Angew. Chem. Int. Ed. 2023, 62, e202311138. [Google Scholar] [CrossRef]
- Sun, Y.; Lu, J.; Li, S.; Dai, C.; Zou, D.; Jing, W. MXene-Based Membranes in Water Treatment: Current Status and Future Prospects. Sep. Purif. Technol. 2024, 331, 125640. [Google Scholar] [CrossRef]
- Goal 6: Clean Water and Sanitation. UNEP-UN Environment Programme. Available online: https://www.unep.org/topics/sustainable-development-goals/why-do-sustainable-development-goals-matter/goal-6 (accessed on 9 September 2025).
- Xu, D.; Li, Z.; Li, L.; Wang, J. Insights into the Photothermal Conversion of 2D MXene Nanomaterials: Synthesis, Mechanism, and Applications. Adv. Funct. Mater. 2020, 30, 2000712. [Google Scholar] [CrossRef]
- Cui, X.; Ruan, Q.; Zhuo, X.; Xia, X.; Hu, J.; Fu, R.; Li, Y.; Wang, J.; Xu, H. Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chem. Rev. 2023, 123, 6891–6952. [Google Scholar] [CrossRef]
- Saxena, A.; Tyagi, A.; Vats, S.; Gupta, I.; Gupta, A.; Kaur, R.; Tiwary, S.K.; Elzatahry, A.A.; Singh, M.; Karim, A. MXene-Integrated Composites for Biomedical Applications: Synthesis, Cancer Diagnosis, and Emerging Frontiers. Small Science 2025, 5, 2400492. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Kalashgrani, M.Y.; Binazadeh, M.; Mazaheri, Y.; Omidifar, N.; Rahmanian, V.; Riazi, M.; Lai, C.W.; Althomali, R.H.; Rahman, M.M.; et al. Recent Advancements in Smart MXene Quantum Dot-Based Nanosystems for Immunomodulatory and Effective Cancer Treatment. Mater. Today Chem. 2024, 38, 102097. [Google Scholar] [CrossRef]
- Fattah-alhosseini, A.; Sangarimotlagh, Z.; Karbasi, M. Latest Progress in Photocatalytic Hydrogen Production Using MXene (Ti3C2)/MOFs Composite: A Review. Int. J. Hydrogen Energy 2024, 79, 771–790. [Google Scholar] [CrossRef]
- Nahirniak, S.; Ray, A.; Saruhan, B. Challenges and Future Prospects of the MXene-Based Materials for Energy Storage Applications. Batteries 2023, 9, 126. [Google Scholar] [CrossRef]
- Awan, H.T.A.; Kumar, L.; Wong, W.P.; Walvekar, R.; Khalid, M. Recent Progress and Challenges in MXene-Based Phase Change Material for Solar and Thermal Energy Applications. Energies 2023, 16, 1977. [Google Scholar] [CrossRef]
- Ahmed, S.; Li, B.; Luo, S.; Liao, K. Heterogeneous Ti3C2Tx MXene-MWCNT@MoS2 Film for Enhanced Long-Term Electromagnetic Interference Shielding in the Moisture Environment. ACS Appl. Mater. Interfaces 2023, 15, 49458–49467. [Google Scholar] [CrossRef]
- Xu, X.; Guo, T.; Lanza, M.; Alshareef, H.N. Status and Prospects of MXene-Based Nanoelectronic Devices. Matter 2023, 6, 800–837. [Google Scholar] [CrossRef]
- Marquez, K.P.; Sisican, K.M.D.; Ibabao, R.P.; Malenab, R.A.J.; Judicpa, M.A.N.; Henderson, L.; Zhang, J.; Usman, K.A.S.; Razal, J.M. Understanding the Chemical Degradation of Ti3 C2 Tx MXene Dispersions: A Chronological Analysis. Small Science 2024, 4, 2400150. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Vashisth, A.; Prehn, E.; Sun, W.; Shah, S.A.; Habib, T.; Chen, Y.; Tan, Z.; Lutkenhaus, J.L.; Radovic, M.; et al. Antioxidants Unlock Shelf-Stable Ti3C2Tx (MXene) Nanosheet Dispersions. Matter 2019, 1, 513–526. [Google Scholar] [CrossRef]
- Choi, E.; Lee, J.; Kim, Y.-J.; Kim, H.; Kim, M.; Hong, J.; Kang, Y.C.; Koo, C.M.; Kim, D.W.; Kim, S.J. Enhanced Stability Of Ti3C2Tx Mxene Enabled by Continuous ZIF-8 Coating. Carbon 2022, 191, 593–599. [Google Scholar] [CrossRef]
- Sankar, S.N.; Araujo, G.; Fernandes, J.; Cerqueira, F.; Alpuim, P.; Ribeiro, A.R.; Lebre, F.; Alfaro-Moreno, E.; Placidi, E.; Marras, S.; et al. Eco-Friendly Production of 2D Ti3C2Tx MXene and Cytotoxicity Mitigation Toward Biomedical Applications. Adv. Mater. Interfaces 2024, 11, 2400203. [Google Scholar] [CrossRef]
- Li, H.; Fan, R.; Zou, B.; Yan, J.; Shi, Q.; Guo, G. Roles of MXenes in Biomedical Applications: Recent Developments and Prospects. J. Nanobiotechnol. 2023, 21, 73. [Google Scholar] [CrossRef]
- Zhou, C.; Zhao, X.; Xiong, Y.; Tang, Y.; Ma, X.; Tao, Q.; Sun, C.; Xu, W. A Review of Etching Methods of MXene and Applications of MXene Conductive Hydrogels. Eur. Polym. J. 2022, 167, 111063. [Google Scholar] [CrossRef]
- Hu, W.; Yang, M.; Fan, T.; Li, Z.; Wang, Y.; Li, H.; Zhu, G.; Li, J.; Jin, H.; Yu, L. A Simple, Efficient, Fluorine-Free Synthesis Method of MXene/Ti3C2Tx Anode through Molten Salt Etching for Sodium-Ion Batteries. Battery Energy 2023, 2, 20230021. [Google Scholar] [CrossRef]
- Mendoza-Sánchez, B.; Samperio-Niembro, E.; Dolotko, O.; Bergfeldt, T.; Kübel, C.; Knapp, M.; Shuck, C.E. Systematic Study of the Multiple Variables Involved in V2AlC Acid-Based Etching Processes, a Key Step in MXene Synthesis. ACS Appl. Mater. Interfaces 2023, 15, 28332–28348. [Google Scholar] [CrossRef] [PubMed]
- Pas, S.E.; Banavath, R.; Dujovic, M.; Radovic, M.; Lutkenhaus, J.L.; Green, M.J. Rapid Electrothermal Heating and Molten Salt Etching to Produce Ti3C2 MXenes. Adv. Mater. Interfaces 2025, e00355. [Google Scholar] [CrossRef]
- Kareem, S.A.; Ibrahim, M.A.; Anaele, J.U.; Olanrewaju, O.F.; Aikulola, E.O.; Bodunrin, M.O. Recent Advances in Machine Learning Applications for MXene Materials: Design, Synthesis, Characterization, and Commercialization for Energy and Environmental Applications. Next Mater. 2025, 8, 100864. [Google Scholar] [CrossRef]
- Hussain, T.; Chandio, I.; Ali, A.; Hyder, A.; Memon, A.A.; Yang, J.; Thebo, K.H. Recent Developments of Artificial Intelligence in MXene-Based Devices: From Synthesis to Applications. Nanoscale 2024, 16, 17723–17760. [Google Scholar] [CrossRef]
- Iravani, S.; Khosravi, A.; Nazarzadeh Zare, E.; Varma, R.S.; Zarrabi, A.; Makvandi, P. MXenes and Artificial Intelligence: Fostering Advancements in Synthesis Techniques and Breakthroughs in Applications. RSC Adv. 2024, 14, 36835–36851. [Google Scholar] [CrossRef] [PubMed]



| Parameter | Top-Down | Bottom-Up | Advanced Methods |
|---|---|---|---|
| Process | Acid etching of MAX phases + delamination | Atomic assembly (CVD/MBE) | Electrochemical/molten salt etching |
| Yield | 10–100 g/batch | <100 mg/batch | 1–10 g/batch (pilot scale) |
| Flake Quality | 0.1–5 μm, moderate defects | 1–50 μm, low defects | 0.5–10 μm, controlled defects |
| Termination Control | Moderate (–O/–OH ratio) | Excellent (atomic precision) | Good (tunable termination) |
| Equipment Cost | 50 k−200 k | 500 k−2 M | 100 k−500 k |
| Scalability | Industrial-ready | Lab-scale only | Pilot-scale demonstrated |
| Advantages | • Simple protocol • High yield • Reliable | • Atomic precision • Excellent crystallinity • Pure terminations | • Safer chemicals • Better environmental profile • Good control |
| Disadvantages | • Toxic etchants • Batch variability • Edge defects | • Extremely costly • Very low throughput • Limited compositions | • Immature technology • Lower yields • Specialized equipment |
| Best For | Bulk applications: • Conductive coatings • Energy storage electrodes | Precision applications: • Nanoelectronics • Quantum devices | Emerging applications: • Biomedical • Wearable sensors |
| TRL * | 6–7 (pilot production) | 3–4 (lab demonstration) | 4–5 (lab-to-pilot transition) |
| HF Etching | Electrochemical | Molten Salt | |
|---|---|---|---|
| Toxicity | Extreme | Low | Moderate |
| Byproducts | Hazardous fluorides | Minimal | Salt residues |
| Termination Control | Excellent | Good | Fair |
| Batch Size | 10–100 g | 5–50 g | 1–10 g |
| Energy Consumption | 50 kWh/kg | 80 kWh/kg | 120 kWh/kg |
| Best Applications | Energy storage | Biomedical | Harsh environments |
| MXene Material | Formula | Structure/Phase | Surface Termination | Key Properties | Key Applications | Ref |
|---|---|---|---|---|---|---|
| Titanium Carbide | Ti3C2Tx | 2D layered (Hexagonal) | –OH, –O, –F | • Metallic conductivity (6000–8000 S/cm) • Hydrophilic (contact angle < 10°) | • Li/Na-ion batteries • EMI shielding • Water purification membranes | [45,46] |
| Titanium Carbonitride | Ti2CTx/Ti2CxNt−xTx | 2D layered | –OH, –O, –F | • Tunable bandgap (0.5–1.2 eV) • High capacitance (1500 F/cm3) | • Supercapacitors • Electrocatalysis (ORR, HER) • Gas sensors | [47,48,49] |
| Niobium Carbide | Nb2CTx/Nb4C3Tx | 2D layered (Hexagonal) | –OH, –O, –F | • High pseudocapacitance • Excellent HER activity (η10 = 120 mV) | • Supercapacitors • Hydrogen production • Conductive coatings | [50,51] |
| Vanadium Carbide | V2CTx/V4C3Tx | 2D layered (Hexagonal) | –OH, –O, –F | • High electronic conductivity • Redox-active surface | • Battery anodes • Electrochemical sensors • Catalysis (CO2 reduction) | [52,53,54] |
| Molybdenum Carbide | Mo2CTx | 2D layered | –OH, –O, –F | • Extreme stability (up to 500 °C) • Low HER overpotential (η10 = 90 mV) | • Fuel cells • Water splitting • Corrosion-resistant coatings | [55,56] |
| Chromium Carbide | Cr2CTx | 2D layered | –OH, –O, –F | • Anti-corrosion • Magnetic ordering | • Protective coatings • Spintronics • Catalysis (N2 fixation) | [5,57] |
| Zirconium Carbide | Zr3C2Tx | 2D layered | –OH, –O, –F | • High thermal conductivity (≈50 W/m·K) • Radiation shielding | • Nuclear reactors • Aerospace materials • Thermal management | [58,59] |
| Hafnium Carbide | Hf3C2Tx | 2D layered | –OH, –O, –F | • Ultra-high temp. stability (>1000 °C) • Neutron absorption | • Hypersonic vehicles • Nuclear shielding • Extreme-environment electronics | [60,61] |
| Tantalum Carbide | Ta4C3Tx | 2D layered | –OH, –O, –F | • Chemical inertness • Plasmonic behavior | • Biomedical implants • Optical sensors • High-temp. catalysis | [62,63] |
| Niobium Nitride | Nb2NTx | 2D layered | –OH, –O, –F | • Superconductivity (T_c ≈ 5 K) • High hardness | • Quantum computing • Superconducting wires • Wear-resistant coatings | [64,65,66] |
| Vanadium Nitride | V2NTx | 2D layered | –OH, –O, –F | • Metallic conductivity • High Li-ion storage capacity | • Fast-charging batteries • Plasmonic devices • Electrochromic windows | [52,67,68] |
| Property | Ti3C2Tx | Mo2CTx | Nb2CTx | Comparison to Graphene |
|---|---|---|---|---|
| In-Plane κ (W/m·K) | 110 | 85 | 180 | 20–50% of graphene |
| Cross-Plane κ (W/m·K) | 2.5 | 1.8 | 3.1 | Comparable |
| Thermal Stability (°C) | 450 | 600 | 550 | Superior to most 2D |
| κ Reduction at 5% defects | 35% | 40% | 30% | More defect-tolerant |
| Property | MXenes | Traditional Electrodes (e.g., Graphite, Activated Carbon) |
|---|---|---|
| Conductivity | 15,000+ S/cm | 100–1000 S/cm |
| Ion Diffusion | Fast (interlayer spacing ~1 nm) | Slower (limited by bulk diffusion) |
| Surface Chemistry | Tunable terminations (–O, –OH) | Fixed (inert) |
| Mechanical Flexibility | Retains performance under bending | Often brittle or prone to cracking |
| Material Type | Specific Capacitance (F g−1) | Electrical Conductivity (S cm−1) | Key Advantages | Major Limitations | Ref |
|---|---|---|---|---|---|
| MXene (Ti3C2Tx) | 400–700 | 103–104 | High conductivity, fast ion transport, and mechanical integrity | Oxidation sensitivity, costly synthesis | [107,108] |
| Activated Carbon | 80–150 | <102 | Low cost, stable | Low capacitance, poor rate capability | [109] |
| Graphene | 200–350 | 103–104 | High conductivity, Light weight | Limited redox activity, aggregation | [110] |
| Sensor Type | Target Analyte | Detection Limit | Response Time | Stability | Advantages Over Conventional Materials |
|---|---|---|---|---|---|
| Gas Sensor | NH3 | 50 ppb | <5 s | >6 months | 10× lower detection limit than SnO2 |
| Gas Sensor | NO2 | 20 ppb | <10 s | >1 year | Works at room temperature (vs. 200 °C for WO3) |
| Biosensor | Glucose | 0.1 mM | <3 s | 2 weeks | 3× higher sensitivity than graphene |
| Biosensor | Troponin I | 0.5 pg/mL | <5 min | 1 month | Detects early-stage myocardial infarction |
| Contaminant Removal Efficiency | Energy Consumption | Operational Lifespan | Scalability | |
|---|---|---|---|---|
| MXene Adsorbents | >95% (heavy metals/dyes) | Low | 5–7 regeneration cycles | High |
| MXene Membranes | 99% (desalination) | Moderate | 2–3 years | Medium |
| MXene Photocatalysts | 90% degradation in <1 h. | Solar-powered | 6–12 months | Emerging |
| Activated Carbon | 70–85% | Low | 3–5 cycles | High |
| RO Membranes | 99% | High | 3–5 years | High |
| TiO2 Photocatalysts | 60–75% | UV required | 4–6 months | Medium |
| Challenge | Current Status | Target Improvement | Potential Solution |
|---|---|---|---|
| Batch Size | <1 kg/batch | 10 kg/batch | Modular reactor systems |
| Etchant Use | HF-dependent | HF-free processes | Molten salt etching |
| Production Yield | 65–75% | >90% | Advanced delamination |
| Cost Point | $500–1000/g | <$50/g | Automated production |
| Method | Etchant | Max HF Conc. | Conditions | Danger Level | Yield | Key Advantages |
|---|---|---|---|---|---|---|
| Conventional | HF (5%) | 5% w/w | 24 h @ 25 °C | 95–100% | 95% | Highest quality MXenes |
| Fluoride Salt | NH4HF2 | 3.5% | 24 h @ 40 °C | 90–95% | 90% | Reduced vapor pressure |
| Acid Mixture | NaF/HCl | 4% | 24 h @ 40 °C | 85–90% | 94% | Better control of F− release |
| Fluoroboric | HBF4 | 18.3% | 24 h @ 60 °C | 80–85% | 71% | Lower acute toxicity |
| Salt-Acid | NaBF4/HCl | 7.3% | 24 h @ 60 °C | 75–85% | 65% | Most environmentally benign |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antony Jose, S.; Price, J.; Lopez, J.; Perez-Perez, E.; Menezes, P.L. Advances in MXene Materials: Fabrication, Properties, and Applications. Materials 2025, 18, 4894. https://doi.org/10.3390/ma18214894
Antony Jose S, Price J, Lopez J, Perez-Perez E, Menezes PL. Advances in MXene Materials: Fabrication, Properties, and Applications. Materials. 2025; 18(21):4894. https://doi.org/10.3390/ma18214894
Chicago/Turabian StyleAntony Jose, Subin, Jordan Price, Jessica Lopez, Erick Perez-Perez, and Pradeep L. Menezes. 2025. "Advances in MXene Materials: Fabrication, Properties, and Applications" Materials 18, no. 21: 4894. https://doi.org/10.3390/ma18214894
APA StyleAntony Jose, S., Price, J., Lopez, J., Perez-Perez, E., & Menezes, P. L. (2025). Advances in MXene Materials: Fabrication, Properties, and Applications. Materials, 18(21), 4894. https://doi.org/10.3390/ma18214894

