Electrochemical Machining of Highly Strain-Hardenable High-Entropy FeMnCrCoSi Alloy: Role of Passivation and Selective Dissolution
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. Electrolytes
2.3. Electrochemical Characterization
2.4. Electrochemical Machining
2.5. Characterization of Tested Samples
3. Results and Discussion
3.1. Microstructure
3.2. OCP and Impedance
3.3. Electrochemical Polarization Behaviors
3.4. Electrochemical Machining
3.5. Morphologies After Dissolution
3.6. XPS Analysis
3.7. Mechanism of Electrochemical Dissolution of the HEA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ECM | Electrochemical Machining |
| EIS | Electrochemical Impedance Spectroscopy |
| Fcc | Face-centered cubic |
| Hcp | hexagonally close packed |
| HEA | High-Entropy Alloy |
| ORR | Oxygen reduction reaction |
| PD | Potentiodynamic |
| PS | Potentiostatic |
| SEM | Scanning Electron Microscopy |
| XPS | X-ray photoelectron spectroscopy |
| XRD | X-ray Diffraction |
References
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural Development in Equiatomic Multicomponent Alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Yeh, J.-W.; Chen, S.-K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Siao Ming Ang, A.; Berndt, C.C.; Sathiyamoorthi, P.; Sesso, M.L.; Anupam, A.; Sankar Kottada, R.; Murty, B. Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi. Metall. Mater. Trans. A 2015, 46, 791–800. [Google Scholar] [CrossRef]
- Li, Z.; Pradeep, K.G.; Deng, Y.; Raabe, D.; Tasan, C.C. Metastable High-Entropy Dual-Phase Alloys Overcome the Strength–Ductility Trade-Off. Nature 2016, 534, 227–230. [Google Scholar] [CrossRef]
- Li, Z.; Tasan, C.C.; Pradeep, K.G.; Raabe, D. A TRIP-Assisted Dual-Phase High-Entropy Alloy: Grain Size and Phase Fraction Effects on Deformation Behavior. Acta Mater. 2017, 131, 323–335. [Google Scholar] [CrossRef]
- Li, Z.; Tasan, C.C.; Springer, H.; Gault, B.; Raabe, D. Interstitial Atoms Enable Joint Twinning and Transformation Induced Plasticity in Strong and Ductile High-Entropy Alloys. Sci. Rep. 2017, 7, 40704. [Google Scholar] [CrossRef]
- Nene, S.S.; Liu, K.; Frank, M.; Mishra, R.S.; Brennan, R.E.; Cho, K.C.; Li, Z.; Raabe, D. Enhanced Strength and Ductility in a Friction Stir Processing Engineered Dual Phase High Entropy Alloy. Sci. Rep. 2017, 7, 16167. [Google Scholar] [CrossRef]
- Nene, S.S.; Frank, M.; Liu, K.; Mishra, R.S.; McWilliams, B.A.; Cho, K.C. Extremely High Strength and Work Hardening Ability in a Metastable High Entropy Alloy. Sci. Rep. 2018, 8, 9920. [Google Scholar] [CrossRef] [PubMed]
- Vakili, S.M.; Zarei-Hanzaki, A.; Anoushe, A.S.; Abedi, H.R.; Mohammad-Ebrahimi, M.H.; Jaskari, M.; Sohn, S.S.; Ponge, D.; Karjalainen, L.P. Reversible Dislocation Movement, Martensitic Transformation and Nano-Twinning during Elastic Cyclic Loading of a Metastable High Entropy Alloy. Acta Mater. 2020, 185, 474–492. [Google Scholar] [CrossRef]
- Agrawal, P.; Haridas, R.S.; Thapliyal, S.; Yadav, S.; Mishra, R.S.; McWilliams, B.A.; Cho, K.C. Metastable High Entropy Alloys: An Excellent Defect Tolerant Material for Additive Manufacturing. Mater. Sci. Eng. A 2021, 826, 142005. [Google Scholar] [CrossRef]
- Saleh, A.A.; Brown, D.W.; Pereloma, E.V.; Clausen, B.; Davies, C.H.J.; Tomé, C.N.; Gazder, A.A. An In-Situ Neutron Diffraction Study of a Multi-Phase Transformation and Twinning-Induced Plasticity Steel during Cyclic Loading. Appl. Phys. Lett. 2015, 106, 171911. [Google Scholar] [CrossRef]
- Xiong, R.; Peng, H.; Si, H.; Zhang, W.; Wen, Y. Thermodynamic Calculation of Stacking Fault Energy of the Fe–Mn–Si–C High Manganese Steels. Mater. Sci. Eng. A 2014, 598, 376–386. [Google Scholar] [CrossRef]
- Lehnhoff, G.R.; Findley, K.O.; De Cooman, B.C. The Influence of Silicon and Aluminum Alloying on the Lattice Parameter and Stacking Fault Energy of Austenitic Steel. Scr. Mater. 2014, 92, 19–22. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, Y. Effect of Si Content on the Stacking Fault Energy in γ-Fe–Mn–Si–C Alloys: Part I. X-Ray Diffraction Line Profile Analysis. Mater. Sci. Eng. A 2009, 516, 73–77. [Google Scholar] [CrossRef]
- Laurent, B.; Gruet, N.; Gwinner, B.; Miserque, F.; Rousseau, K.; Ogle, K. Dissolution and Passivation of a Silicon-Rich Austenitic Stainless Steel During Active-Passive Cycles in Sulfuric and Nitric Acid. J. Electrochem. Soc. 2017, 164, C892–C900. [Google Scholar] [CrossRef]
- Lee, B.; Lee, H.J.; Kang, D.W. The Effect of Silicon Content on the Pitting Corrosion of Duplex Stainless Steel Weldment. Arch. Mater. Sci. Eng. 2014, 67, 60–69. [Google Scholar]
- Sittiho, A.; Bhattacharyya, M.; Graves, J.; Nene, S.S.; Mishra, R.S.; Charit, I. Friction Stir Processing of a High Entropy Alloy Fe42Co10Cr15Mn28Si5 with Transformative Characteristics: Microstructure and Mechanical Properties. Mater. Today Commun. 2021, 28, 102635. [Google Scholar] [CrossRef]
- Jin, W.; Sharma, P.; Singh, P.; Kundu, A.; Balasubramanian, G.; Chan, H.M. Solid State Reduction Driven Synthesis of Mn Containing Multi-Principal Component Alloys. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2024, 55, 3799–3808. [Google Scholar] [CrossRef]
- Adler, P.H.; Olson, G.B.; Owen, W.S. Strain Hardening of Hadfield Manganese Steel. Metall. Mater. Trans. A 1986, 17, 1725–1737. [Google Scholar] [CrossRef]
- Hutchinson, B.; Ridley, N. On Dislocation Accumulation and Work Hardening in Hadfield Steel. Scr. Mater. 2006, 55, 299–302. [Google Scholar] [CrossRef]
- Horng, J.T.; Liu, N.M.; Chiang, K.T. Investigating the Machinability Evaluation of Hadfield Steel in the Hard Turning with Al2O3/TiC Mixed Ceramic Tool Based on the Response Surface Methodology. J. Mater. Process Technol. 2008, 208, 532–541. [Google Scholar] [CrossRef]
- Handayani, D.; Okhuysen, V.F.; Wagner, N. Machinability of High Mn Steel Using Tool Life Criteria. Int. J. Met. 2024, 18, 600–607. [Google Scholar] [CrossRef]
- Sant, S.B.; Smith, R.W. A Study in the Work-Hardening Behaviour of Austenitic Manganese Steels. J. Mater. Sci. 1987, 22, 1808–1814. [Google Scholar] [CrossRef]
- Klink, A.; Harst, S.; Olivier, M.; Tombul, U.; Bergs, T. High Entropy Alloy Machining by EDM and ECM. Procedia CIRP 2020, 95, 178–182. [Google Scholar] [CrossRef]
- Rajurkar, K.P.; Sundaram, M.M.; Malshe, A.P. Review of Electrochemical and Electrodischarge Machining. Procedia CIRP 2013, 6, 13–26. [Google Scholar] [CrossRef]
- McGeough, J. Principles of Electrochemical Machining; Chapman and Hall: Boca Raton, FL, USA, 1974. [Google Scholar]
- Sundaram, M.; Rajurkar, K. Electrical and Electrochemical Processes. In Intelligent Energy Field Manufacturing; CRC Press: Boca Raton, FL, USA, 2010; pp. 173–212. [Google Scholar] [CrossRef]
- Klocke, F.; Harst, S.; Ehle, L.; Zeis, M.; Klink, A. Surface Integrity in Electrochemical Machining Processes: An Analysis on Material Modifications Occurring during Electrochemical Machining. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2018, 232, 578–585. [Google Scholar] [CrossRef]
- Arshad, M.H.; Saxena, K.K.; Reynaerts, D. Operando Evaluation of Passivation Phenomenon during ECM/Laser-ECM: Direct and on-Machine Evidence of Passivation Evolution. npj Adv. Manuf. 2025, 2, 7. [Google Scholar] [CrossRef]
- Sun, H.; Liu, J. Hot Corrosion of Fe-Cr-Ni Multi-Principal Element Alloys in Na2SO4+25%NaCl Mixture Salts at 700–900 °C. Intermetallics 2024, 166, 108203. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, Y. Electrochemical Machining of Complex Components of Aero-Engines: Developments, Trends, and Technological Advances. Chin. J. Aeronaut. 2021, 34, 28–53. [Google Scholar] [CrossRef]
- Ryu, S.H. Micro Fabrication by Electrochemical Process in Citric Acid Electrolyte. J. Mater. Process Technol. 2009, 209, 2831–2837. [Google Scholar] [CrossRef]
- Thanigaivelan, R.; Arunachalam, R.M.; Karthikeyan, B.; Loganathan, P. Electrochemical Micromachining of Stainless Steel with Acidified Sodium Nitrate Electrolyte. Procedia CIRP 2013, 6, 351–355. [Google Scholar] [CrossRef]
- Tayyab, K.B.; Farooq, A.; Alvi, A.A.; Nadeem, A.B.; Deen, K.M. Corrosion Behavior of Cold-Rolled and Post Heat-Treated 316L Stainless Steel in 0.9wt% NaCl Solution. Int. J. Miner. Metall. Mater. 2021, 28, 440–449. [Google Scholar] [CrossRef]
- Varshney, P.; Mishra, R.S.; Kumar, N. Understanding the Nature of Passivation Film Formed during Corrosion of Fe39Mn20Co20Cr15Si5Al1 High Entropy Alloy in 3.5Wt% NaCl Solution. J. Alloys Compd. 2022, 904, 164100. [Google Scholar] [CrossRef]
- Waseda, Y.; Matsubara, E.; Shinoda, K. X-Ray Diffraction Crystallography; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- King, A.D.; Birbilis, N.; Scully, J.R. Accurate Electrochemical Measurement of Magnesium Corrosion Rates; a Combined Impedance, Mass-Loss and Hydrogen Collection Study. Electrochim. Acta 2014, 121, 394–406. [Google Scholar] [CrossRef]
- Orazem, M.E.; Bernard, T. Electrochemical Impedance Spectroscopy; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; ISBN 9781118527399. [Google Scholar]
- Shen, J.; Agrawal, P.; Rodrigues, T.A.; Lopes, J.G.; Schell, N.; He, J.; Zeng, Z.; Mishra, R.S.; Oliveira, J.P. Microstructure Evolution and Mechanical Properties in a Gas Tungsten Arc Welded Fe42Mn28Co10Cr15Si5 Metastable High Entropy Alloy. Mater. Sci. Eng. A 2023, 867, 144722. [Google Scholar] [CrossRef]
- Engelhard, M.H.; Baer, D.R.; Herrera-Gomez, A.; Sherwood, P.M.A. Introductory Guide to Backgrounds in XPS Spectra and Their Impact on Determining Peak Intensities. J. Vac. Sci. Technol. A 2020, 38, 063203. [Google Scholar] [CrossRef]
- Gupta, R.P.; Sen, S.K. Calculation of Multiplet Structure of Core P-Vacancy Levels. Phys. Rev. B 1974, 10, 71–77. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS Spectra of Fe2+ and Fe3+ Ions in Oxide Materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
- McIntyre, N.S.; Zetaruk, D.G. X-Ray Photoelectron Spectroscopic Studies of Iron Oxides. Anal. Chem. 2002, 49, 1521–1529. [Google Scholar] [CrossRef]
- Di Castro, V.; Ciampi, S. XPS Study of the Growth and Reactivity of Fe/MnO Thin Films. Surf. Sci. 1995, 331–333, 294–299. [Google Scholar] [CrossRef]
- Mekki, A.; Holland, D.; Ziq, K.; McConville, C.F. XPS and Magnetization Studies of Cobalt Sodium Silicate Glasses. J. Non Cryst. Solids 1997, 220, 267–279. [Google Scholar] [CrossRef]
- Varshney, P.; Kumar, N. Exploring the Influence of Tensile Load on the Nature of Passive Film during Stress Corrosion Cracking in a TRIP Fe39Mn20Co20Cr15Si5Al1 (at.%) High Entropy Alloy. Electrochim. Acta 2024, 497, 144591. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Banerjee, D. Interpretation of XPS Mn(2p) Spectra of Mn Oxyhydroxides and Constraints on the Mechanism of MnO2 Precipitation. Am. Mineral. 1998, 83, 305–315. [Google Scholar] [CrossRef]
- Keller, P.; Strehblow, H.H. XPS Investigations of Electrochemically Formed Passive Layers on Fe/Cr-Alloys in 0.5 M H2SO4. Corros. Sci. 2004, 46, 1939–1952. [Google Scholar] [CrossRef]
- Hattori, T.; Nishina, T. Studies of SiO2 and Si/SiO2 Interfaces by XPS. Surf. Sci. 1979, 86, 555–561. [Google Scholar] [CrossRef]
- Lu, C.W.; Lu, Y.S.; Lai, Z.H.; Yen, H.W.; Lee, Y.L. Comparative Corrosion Behavior of Fe50Mn30Co10Cr10 Dual-Phase High-Entropy Alloy and CoCrFeMnNi High-Entropy Alloy in 3.5Wt% NaCl Solution. J. Alloys Compd. 2020, 842, 155824. [Google Scholar] [CrossRef]
- Li, S.; Liu, X.; Hou, X.; Liu, Z.; Wang, X.; Narayanan, J.A.; Wu, T.; Bai, Y.; Dong, Y.; Jiang, H. Evolution of Corrosion Mechanism of 3D Transition Metal High Entropy Alloys: A Review. J. Mater. Res. Technol. 2025, 35, 4142–4163. [Google Scholar] [CrossRef]
- Hsu, K.M.; Chen, S.H.; Lin, C.S. Microstructure and Corrosion Behavior of FeCrNiCoMnx (x = 1.0, 0.6, 0.3, 0) High Entropy Alloys in 0.5 M H2SO4. Corros. Sci. 2021, 190, 109694. [Google Scholar] [CrossRef]
- Lohrengel, M.M.; Rataj, K.P.; Münninghoff, T. Electrochemical Machining—Mechanisms of Anodic Dissolution. Electrochim. Acta 2016, 201, 348–353. [Google Scholar] [CrossRef]
- Jakob, L.; Bartsch, J.; Krossing, I. Reaction Mechanisms of High-Rate Copper Electrochemical Machining in Nitrate Electrolytes. Angew. Chem. Int. Ed. 2024, 63, e202412876. [Google Scholar] [CrossRef]
- Jakob, L.; Heinz, F.D.; Nezam, E.; Butschke, B.; Krossing, I.; Bartsch, J. In-Situ Evidence for the Existence of Surface Films in Electrochemical Machining of Copper in Nitrate Electrolytes. Electrochim. Acta 2024, 493, 144391. [Google Scholar] [CrossRef]
- Zander, D.; Schupp, A.; Beyss, O.; Rommes, B.; Klink, A. Oxide Formation during Transpassive Material Removal of Martensitic 42CrMo4 Steel by Electrochemical Machining. Materials 2021, 14, 402. [Google Scholar] [CrossRef]
- Liu, G.; Gong, Z.; Yang, Y.; Shi, J.; Liu, Y.; Dou, X.; Li, C. Electrochemical Dissolution Behavior of Stainless Steels with Different Metallographic Phases and Its Effects on Micro Electrochemical Machining Performance. Electrochem. Commun. 2024, 160, 107677. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Xue, W.; Zhu, H.; Xu, K.; Liu, Y. Electrochemical Dissolution Behavior of 07Cr16Ni6 Alloy in Sodium Nitrate Solution. Arab. J. Chem. 2024, 17, 105708. [Google Scholar] [CrossRef]
- Asakura, S.; Nobe, K. Electrodissolution Kinetics of Iron in Chloride Solutions: Part I. Neutral Solutions. J. Electrochem. Soc. 1971, 118, 13. [Google Scholar] [CrossRef]
- Lohrengel, M.M.; Rosenkranz, C. Microelectrochemical Surface and Product Investigations during Electrochemical Machining (ECM) in NaNO3. Corros. Sci. 2005, 47, 785–794. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, D.; Yun, N. Research on Intelligent Measurement and Control Method of Interelectrode Gap of Electrochemical Machining (ECM). China Mech. Eng. 2007, 18, 2859. [Google Scholar]















| Solution | Ecorra, VAg/AgCl | iocb, A/cm2 | ioac, A/cm2 | icorrd, A/cm2 | βce, V/decade | βa f, V/decade |
|---|---|---|---|---|---|---|
| 20% NaNO3 | −0.33 ± 0.04 | 1.30 ± 0.99 × 10−8 | 5.50 ± 3.54 × 10−6 | 2.35 ± 1.77 × 10−5 | −0.35 ± 0.07 | 0.59 ± 0.10 |
| 20% NaNO3 + 10 mM Citric acid | −0.34 ± 0.06 | 3.02 ± 4.22 × 10−9 | 6.05 ± 7.00 × 10−6 | 3.20 ± 0.14 × 10−5 | −0.24 ± 0.03 | 0.64 ± 0.40 |
| 20% NaNO3 + 10 mM HNO3 | −0.27 ± 0.01 | 4.00 ± 5.66 × 10−15 | 4.04 ± 5.60 × 10−7 | 2.70 ± 2.26 × 10−5 | −0.15 ± 0.10 | 0.25 ± 0.13 |
| 20% NaCl | −0.45 ± 0.04 | 1.26 ± 1.33 × 10−8 | 1.43 ± 1.94 × 10−6 | 1.45 ± 0.78 × 10−5 | −0.30 ± 0.00 | 0.27 ± 0.16 |
| 1 M NaNO3 | −0.255 ± 0.00 | 1.75 ± 3.50 × 10−14 | 3.00 ± 1.50 × 10−10 | 9.00 ± 3.28 × 10−7 | −0.14 ± 0.03 | 0.16 ± 0.13 |
| 1 M NaNO3 + 0.01 Citric acid | −0.266 ± 0.01 | 1.20 ± 0.28 × 10−18 | 9.05 ± 4.31 × 10−11 | 2.68 ± 0.40 × 10−7 | −0.10 ± 0.01 | 0.14 ± 0.01 |
| 1 M NaNO3 + 0.01 M HNO3 | −0.273 ± 0.02 | 2.00 ± 1.41 × 10−17 | 2.00 ± 1.38 × 10−9 | 1.1 ± 0.51 × 10−6 | −0.12 ± 0.04 | 0.20 ± 0.05 |
| Solution | pH | Redox Potential of Oxygen Reduction Reaction, VAg/AgCl |
|---|---|---|
| 20 wt% NaNO3 | 5.70 | 0.70 |
| 20 wt% NaNO3 + 0.01 M HNO3, | 1.69 | 0.93 |
| 20 wt% NaNO3 + 0.01 M Citric acid | 2.16 | 0.90 |
| 20 wt% NaCl | 5.99 | 0.68 |
| Solution | Applied Potential, V | Total Charge Recorded, A.s | a ∆VTheoretical, 10−3 cm3 | b ∆Vmeasured, 10−4 cm3 | Faradaic Efficiency, % |
|---|---|---|---|---|---|
| 20% NaNO3 | 5 | 109.81 ± 01.19 | 3.16 | 2.75 ± 00.53 | 8.68 |
| 7.5 | 273.21 ± 10.10 | 7.85 | 8.22 ± 00.92 | 10.45 | |
| 10 | 357.89 ± 42.20 | 10.30 | 6.00 ± 01.13 | 5.83 | |
| 20% NaNO3 + 0.01M HNO3 | 5 | 111.20 ± 03.08 | 3.20 | 3.55 ± 00.93 | 11.08 |
| 7.5 | 316.34 ± 10.34 | 9.09 | 7.54 ± 01.72 | 8.30 | |
| 10 | 434.21 ± 24.90 | 12.50 | 16.15 ± 02.44 | 12.90 | |
| 20% NaNO3 + 0.01 M Citric acid | 5 | 98.49 ± 00.79 | 2.83 | 1.78 ± 00.20 | 6.29 |
| 7.5 | 299.54 ± 02.46 | 8.61 | 7.57 ± 00.94 | 8.78 | |
| 10 | 577.28 ± 39.10 | 16.60 | 36.31 ± 04.08 | 21.9 | |
| 20% NaCl | 5 | 115.02 ± 11.16 | 3.30 | 5.61 ± 00.95 | 16.94 |
| 7.5 | 164.64 ± 25.79 | 4.73 | 10.10 ± 02.83 | 21.35 | |
| 10 | 193.43 ± 26.41 | 5.56 | 28.45 ± 06.64 | 57.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balakrishnan, K.; Kumar, K.; Charit, I.; Raja, K.S. Electrochemical Machining of Highly Strain-Hardenable High-Entropy FeMnCrCoSi Alloy: Role of Passivation and Selective Dissolution. Materials 2025, 18, 4881. https://doi.org/10.3390/ma18214881
Balakrishnan K, Kumar K, Charit I, Raja KS. Electrochemical Machining of Highly Strain-Hardenable High-Entropy FeMnCrCoSi Alloy: Role of Passivation and Selective Dissolution. Materials. 2025; 18(21):4881. https://doi.org/10.3390/ma18214881
Chicago/Turabian StyleBalakrishnan, Kavindan, Kundan Kumar, Indrajit Charit, and Krishnan S Raja. 2025. "Electrochemical Machining of Highly Strain-Hardenable High-Entropy FeMnCrCoSi Alloy: Role of Passivation and Selective Dissolution" Materials 18, no. 21: 4881. https://doi.org/10.3390/ma18214881
APA StyleBalakrishnan, K., Kumar, K., Charit, I., & Raja, K. S. (2025). Electrochemical Machining of Highly Strain-Hardenable High-Entropy FeMnCrCoSi Alloy: Role of Passivation and Selective Dissolution. Materials, 18(21), 4881. https://doi.org/10.3390/ma18214881

