Influence of Surface Treatments and Thermocycling on Wettability, Roughness, and Bond Strength of Lithium Disilicate CAD/CAM Ceramics
Abstract
1. Introduction
- Analyze and compare the effect of five surface treatments (control, hydrofluoric acid etching, air-borne particle abrasion, Er,Cr:YSGG laser irradiation at 2 Watt, and 3 Watt) on surface roughness, wettability, and microshear bond strength (µSBS) of Amber Mill, Vita Suprinity, and IPS e.max CAD.
- Evaluate the impact of thermocycling (10,000 cycles between 5 °C and 55 °C) on the durability of resin–ceramic bonds.
2. Materials and Methods
2.1. Materials
2.2. Specimen Preparation
2.3. Surface Treatments
2.4. Thermal Aging (Thermocycling)
2.5. Surface Characterization
2.5.1. Surface Roughness (Ra)
2.5.2. Water Contact Angle (WCA)
2.5.3. Microshear Bond Strength (µSBS)
2.6. Failure Mode Analysis
2.7. Statistical Analysis
3. Results
3.1. Surface Roughness (Ra)
3.2. Water Contact Angle (WCA)
3.3. Microshear Bond Strength (µSBS)
3.4. Failure-Mode Distribution
4. Discussion
5. Conclusions
- (1)
- The aim of this study to evaluate the effects of different surface treatments and thermocycling on the surface roughness, water contact angle, and microshear bond strength of three CAD/CAM lithium disilicate-based ceramics was successfully achieved.
- (2)
- Hydrofluoric acid etching resulted in the highest surface roughness and microshear bond strength values for all tested ceramics, confirming its effectiveness in promoting micromechanical interlocking.
- (3)
- Laser irradiation at 2 W produced moderate improvements in surface characteristics and bond strength, while higher laser power (3 W) and airborne-particle abrasion were less effective and occasionally caused surface irregularities.
- (4)
- Water contact angle analysis revealed that hydrofluoric-acid-treated specimens exhibited the most hydrophilic surface, whereas laser and sandblasted groups showed higher contact angles, indicating reduced wettability.
- (5)
- Thermocycling induced moderate but statistically detectable changes in surface characteristics, slightly reducing roughness differences in Vita Suprinity and increasing contact angle values, while bond strength remained stable or showed slight increases in some groups. These findings suggest limited hydrothermal effects rather than significant deterioration after aging.
- (6)
- Among the tested ceramics, IPS e.max CAD generally demonstrated higher microshear bond strength compared with Vita Suprinity and Amber Mill, which may be related to its crystalline content and microstructural characteristics.
- (7)
- From a clinical perspective, hydrofluoric acid etching remains the most effective surface treatment method for achieving durable adhesion between resin cements and lithium disilicate-based ceramics. However, laser irradiation at optimized parameters may serve as a viable alternative when hydrofluoric acid application is contraindicated.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NLD | Nano lithium disilicate |
ZLS | Zirconia-reinforced lithium silicate |
LD | Lithium Disilicate |
AM | Amber Mill |
VS | Vita Suprinity |
IPS | IPS e.max CAD |
References
- Suganna, H.; Kausher, S.; Ahmed, T.; Alharbi, B.F.; Alsubaie, D.S.F.; Aruna, S. Contemporary Evidence of CAD-CAM in Dentistry: A Systematic Review. Cureus 2022, 14, e31687. [Google Scholar] [CrossRef]
- Gaikwad, S.A.; Jagtap, A.K.; Madhav, V.N.V. Comparative Evaluation of Optical Properties of Lithium Disilicate Crowns Fabricated by Pressable and CAD/CAM Methods—An In Vitro Study. J. Oral Biol. Craniofac. Res. 2025, 15, 1248–1253. [Google Scholar] [CrossRef] [PubMed]
- Polat, O.D.; Eyüboğlu, T.F.; Özcan, M. Survival and Complication Rates of Polymer-Infiltrated Ceramic-Network Single-Tooth Restorations with an Observation Period of up to Three Years. Eur. J. Prosthodont. Restor. Dent. 2024, 32, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Villalobos-Tinoco, J.; Floriani, F.; Rojas-Rueda, S.; Mekled, S.; Conner, C.; Colvert, S.; Jurado, C.A. Enhancing Smile Aesthetics and Function with Lithium Disilicate Veneers: A Brief Review and Case Study. Clin. Pract. 2025, 15, 66. [Google Scholar] [CrossRef] [PubMed]
- Munoz, A.; Louca, C.; Vichi, A. Characterization of a Lithium Disilicate CAD/CAM Material with Firing Temperature-Controlled Translucency. Materials 2025, 18, 1591. [Google Scholar] [CrossRef]
- Munoz, A.; Zhao, Z.; Paolone, G.; Louca, C.; Vichi, A. Flexural Strength of CAD/CAM Lithium-Based Silicate Glass–Ceramics: A Narrative Review. Materials 2023, 16, 4398. [Google Scholar] [CrossRef]
- Donmez, M.B.; Olcay, E.O.; Demirel, M. Load-to-Failure Resistance and Optical Characteristics of Nano-Lithium Disilicate Ceramic after Different Aging Processes. Materials 2022, 15, 4011. [Google Scholar] [CrossRef]
- Gamal, N.; Nouh, I.; Eldemellawy, M.; El-Etreby, A. Effect of Crystallization Temperature and Holding Time on Color Reproduction, Translucency, and Biaxial Flexural Strength of Novel Nano Lithium Disilicate Glass-Ceramic (Amber Mill). BMC Oral Health 2025, 25, 1146. [Google Scholar] [CrossRef]
- Jurado, C.A.; El-Gendy, T.; Hyer, J.; Tsujimoto, A. Color Stability of Fully- and Pre-Crystalized Chair-Side CAD-CAM Lithium Disilicate Restorations after Required and Additional Sintering Processes. J. Adv. Prosthodont. 2022, 14, 56–62. [Google Scholar] [CrossRef]
- Manziuc, M.; Kui, A.; Chisnoiu, A.; Labuneț, A.; Negucioiu, M.; Ispas, A.; Buduru, S. Zirconia-Reinforced Lithium Silicate Ceramic in Digital Dentistry: A Comprehensive Literature Review of Our Current Understanding. Medicina 2023, 59, 2135. [Google Scholar] [CrossRef]
- Alkhudhairy, F.; Naseem, M.; Ahmad, Z.H.; Alnooh, A.N.; Vohra, F. Efficacy of Phototherapy with Different Conventional Surface Treatments on Adhesive Quality of Lithium Disilicate Ceramics. Photodiagn. Photodyn. Ther. 2019, 25, 292–295. [Google Scholar] [CrossRef]
- Guimarães, H.A.B.; Cardoso, P.C.; Decurcio, R.A.; Monteiro, L.J.E.; Almeida, L.N.; Martins, W.F.; Magalhães, A.P.R. Simplified Surface Treatments for Ceramic Cementation: Use of Universal Adhesive and Self-Etching Ceramic Primer. Int. J. Biomater. 2018, 2018, 2598073. [Google Scholar] [CrossRef] [PubMed]
- Grégoire, G.; Poulet, P.; Sharrock, P.; Destruhaut, F.; Tavernier, B. Hydrofluoric Acid Etching versus Self-Etching Glass Ceramic Primer: Consequences on the Interface with Resin Cements. Oral Health Care 2019, 4, 169. [Google Scholar] [CrossRef]
- Sarmento, H.R.; Campos, F.; Sousa, R.S.; Machado, J.P.; Souza, R.O.; Bottino, M.A.; Ozcan, M. Influence of Air-Particle Deposition Protocols on the Surface Topography and Adhesion of Resin Cement to Zirconia. Acta Odontol. Scand. 2014, 72, 346–353. [Google Scholar] [CrossRef]
- Saran, R.; Ginjupalli, K.; George, S.D.; Chidangil, S.; Unnikrishnan, V.K. Laser as a Tool for Surface Modification of Dental Biomaterials: A Review. Heliyon 2023, 9, e17457. [Google Scholar] [CrossRef]
- Mohammed, N.N.A.; Al-Bawi, Z.F.; Abdulhameed, B.S. Evaluation of Lithium Disilicate Surface Morphology Treated with Er,Cr:YSGG and Fractional CO2 Laser. Iraqi J. Laser 2023, 22, 71–79. [Google Scholar] [CrossRef]
- Ebrahimi-Chaharom, M.E.; Pournaghi-Azar, F.; Mohammadi, N.; Nasiri, R. Effect of Surface Preparation with Nd:YAG and Er,Cr:YSGG Lasers on the Repair Bond Strength of Lithium Disilicate Glass Ceramic to a Silorane-Based Composite Resin. J. Dent. Res. Dent. Clin. Dent. Prospect. 2018, 12, 12–17. [Google Scholar] [CrossRef]
- Gale, M.S.; Darvell, B.W. Thermal Cycling Procedures for Laboratory Testing of Dental Restorations. J. Dent. 1999, 27, 89–99. [Google Scholar] [CrossRef]
- ISO 29022:2013; Dentistry—Adhesion—Notched-Edge Shear Bond Strength Test. ISO: Geneva, Switzerland, 2013.
- França, R.; Bebsh, M.; Haimeur, A.; Fernandes, A.C.; Sacher, E. Physicochemical Surface Characterizations of Four Dental CAD/CAM Lithium Disilicate-Based Glass Ceramics on HF Etching: An XPS Study. Ceram. Int. 2020, 46, 1411–1418. [Google Scholar] [CrossRef]
- Detogni, A.C.; Araújo-Neto, V.G.; Lima, R.B.W.; Sinhoreti, M.A.C. Different Adhesive Approaches for the Bonding of a New Universal Resin Cement to a Disilicate Glass-Ceramic. Eur. J. Oral Sci. 2024, 132, e13024. [Google Scholar] [CrossRef]
- Rodrigues, M.R.; Grangeiro, M.T.V.; Rossi, N.R.; de Carvalho Ramos, N.; de Carvalho, R.F.; Kimpara, E.T.; Tribst, J.P.M.; de Arruda Paes Junior, T.J. Influence of Optional Crystallization Firing on the Adhesion of Zirconia-Reinforced Lithium Silicate before and after Aging. Coatings 2022, 12, 1904. [Google Scholar] [CrossRef]
- Unalan Degirmenci, B.; Degirmenci, A.; Seyfioglu Polat, Z. The Influence of Thermocycling and Ultraviolet Aging on Surface Characteristics and the Repair Bond Strength of CAD/CAM Resin Nanoceramics. J. Funct. Biomater. 2025, 16, 156. [Google Scholar] [CrossRef]
- Elsaka, S.E.; Elnaghy, A.M. Mechanical Properties of Zirconia Reinforced Lithium Silicate Glass-Ceramic. Dent. Mater. 2016, 32, 908–914. [Google Scholar] [CrossRef]
- Murillo-Gómez, F.; Hernández-Víquez, J.R.; Sauma-Montes de Oca, J.R.; Vargas-Vargas, C.; González-Vargas, N.; Vega-Baudrit, J.R.; Chavarría-Bolaños, D. Mechanical, Adhesive and Surface Properties of a Zirconia-Reinforced Lithium Silicate CAD/CAM Ceramic Exposed to Different Etching Protocols. Materials 2024, 17, 5039. [Google Scholar] [CrossRef] [PubMed]
- Carek, A.; Slokar Benić, L.; Komar, D.; Krebelj, E. Roughness of the Surface of Zirconia-Reinforced Lithium Disilicate Ceramic Treated by Different Procedures. Materials 2023, 16, 265. [Google Scholar] [CrossRef]
- Vasiliu, R.-D.; Porojan, S.-D.; Bîrdeanu, M.-I.; Uțu, I.-D.; Porojan, L. The Effect of Thermocycling and Surface Treatments on the Surface Roughness and Microhardness of Three Heat-Pressed Ceramics Systems. Crystals 2023, 10, 160. [Google Scholar] [CrossRef]
- Yousef, L.W.; Baig, M.R.; Qudeimat, M.A.; Matinlinna, J.P.; Al-Shammari, M. Enhancing Bonding of Zirconia Lithium Silicate Ceramics to Dentin: The Effect of Surface Treatment and Resin Cement. Int. J. Adhes. Adhes. 2024, 132, 103729. [Google Scholar] [CrossRef]
- El-Damanhoury, H.M.; Gaintantzopoulou, M.D. Self-Etching Ceramic Primer versus Hydrofluoric Acid Etching: Etching Efficacy and Bonding Performance. J. Prosthodont. Res. 2018, 62, 75–83. [Google Scholar] [CrossRef]
- Motevasselian, F.; Amiri, Z.; Chiniforush, N.; Mirzaei, M.; Thompson, V. In Vitro Evaluation of the Effect of Different Surface Treatments of a Hybrid Ceramic on the Microtensile Bond Strength to a Luting Resin Cement. J. Lasers Med. Sci. 2019, 10, 297–303. [Google Scholar] [CrossRef]
- Turker, N.; Buyukkaplan, U.; Başar, E.K.; Özarslan, M.M. The Effects of Different Surface Treatments on the Shear Bond Strengths of Two Dual-Cure Resin Cements to CAD/CAM Restorative Materials. J. Adv. Prosthodont. 2020, 12, 189–196. [Google Scholar] [CrossRef]
- El-Damanhoury, H.M.; Elsahn, N.A.; Sheela, S.; Gaintantzopoulou, M.D. Adhesive Luting to Hybrid Ceramic and Resin Composite CAD/CAM Blocks: Er:YAG Laser versus Chemical Etching and Micro-Abrasion Pretreatment. J. Prosthodont. Res. 2021, 65, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Barutcigil, K.; Barutcigil, Ç.; Kul, E.; Özarslan, M.M.; Buyukkaplan, U.S. Effect of Different Surface Treatments on Bond Strength of Resin Cement to a CAD/CAM Restorative Material. J. Prosthodont. 2019, 28, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Çelik, E.; Sahin, S.C.; Dede, D.Ö. Shear Bond Strength of Nanohybrid Composite to the Resin Matrix Ceramics after Different Surface Treatments. Photomed. Laser Surg. 2018, 36, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Çelik, E.; Şahin, S.C.; Dede, D.Ö. Effect of Surface Treatments on the Bond Strength of Indirect Resin Composite to Resin Matrix Ceramics. J. Adv. Prosthodont. 2019, 11, 223–231. [Google Scholar] [CrossRef]
- Pilecco, R.O.; da Rosa, L.S.; Pereira, G.K.R.; Tribst, J.P.M.; May, L.G.; Valandro, L.F. The Loss of Resin Cement Adhesion to Ceramic Influences the Fatigue Behavior of Bonded Lithium Disilicate Restorations. J. Mech. Behav. Biomed. Mater. 2023, 148, 106169. [Google Scholar] [CrossRef]
- Alsulimani, O.A.; Alhaddad, A.J.; AlSaggaf, A.U.; Altassan, M.; Alghamdi, M.; Abuzinadah, S.H.; Hajjaj, M.S.; Marghalani, A.A. Comparative In Vitro Testing of the Tensile Bond Strength under Artificial Aging between Different Lithium Disilicate Ceramics to Composite Substrate: A Novel Methodology. Cureus 2024, 16, e66163. [Google Scholar] [CrossRef]
Material | Type/Definition | Manufacturer (Country) | Composition (wt%) | Lot No. |
---|---|---|---|---|
IPS e.max CAD | Lithium disilicate glass-ceramic | Ivoclar Vivadent, Schaan, Liechtenstein | SiO2 57–80; Li2O 11–19; K2O 0–13; P2O5 0–11; ZrO2 0–8; ZnO 0–8; others + coloring oxides 0–12 | YB5od4WZ |
Vita Suprinity PC | Zirconia-reinforced lithium silicate glass-ceramic | VITA Zahnfabrik, Bad Säckingen, Germany | SiO2 56–64; Li2O 15–21; ZrO2 8–12; P2O5 3–8; K2O 1–4; Al2O3 1–4; CeO2 0–4; pigments 0–4 | EC4S010109 89100 |
Amber Mill | Nano-lithium disilicate glass-ceramic | HASS Bio, Gangwon-do, Republic of Korea | SiO2, Li2O, K2O, MgO, Al2O3, P2O5, and other oxides | EBE05PD1101 |
Surface Treatment | Amber Mill—Non-Aged | Amber Mill—Aged | Vita Suprinity—Non-Aged | Vita Suprinity—Aged | IPS e.max CAD—Non-Aged | IPS e.max CAD—Aged |
---|---|---|---|---|---|---|
Control (no treatment) | 1.04 ± 0.17 A a | 0.96 ± 0.13 A a | 0.90 ± 0.19 A a | 0.72 ± 0.27 A a | 0.69 ± 0.16 B b | 0.68 ± 0.23 B b |
Hydrofluoric acid etching | 0.87 ± 0.14 A a | 1.08 ± 0.21 A a | 0.47 ± 0.20 B b | 0.59 ± 0.23 B a | 0.90 ± 0.12 A a | 0.88 ± 0.09 A a |
Airborne particle abrasion | 0.88 ± 0.09 A a | 0.99 ± 0.07 A a | 0.77 ± 0.14 B a | 0.72 ± 0.12 B a | 0.60 ± 0.08 B b | 0.58 ± 0.15 B b |
Er,Cr:YSGG laser 2 W | 0.93 ± 0.12 A a | 0.93 ± 0.10 A a | 0.91 ± 0.21 A a | 0.63 ± 0.27 B a | 0.68 ± 0.13 B b | 0.70 ± 0.13 B b |
Er,Cr:YSGG laser 3 W | 0.96 ± 0.09 A a | 0.78 ± 0.38 AB a | 0.84 ± 0.20 AB a | 0.87 ± 0.33 AB a | 0.61 ± 0.16 B b | 0.56 ± 0.14 B b |
Surface Treatment | Amber Mill—Non-Aged | Amber Mill—Aged | Vita Suprinity—Non-Aged | Vita Suprinity—Aged | IPS e.max CAD—Non-Aged | IPS e.max CAD—Aged |
---|---|---|---|---|---|---|
Control | 61.0 ± 4.7 B a | 63.4 ± 2.1 B c | 47.8 ± 1.8 D d | 61.4 ± 4.2 B a | 53.4 ± 3.1 C c | 70.0 ± 1.4 A a |
Hydrofluoric acid etching | 58.6 ± 3.4 B b | 70.8 ± 1.6 A b | 52.0 ± 2.9 C c | 52.8 ± 1.9 C c | 60.4 ± 2.3 B b | 62.6 ± 2.0 B b |
Airborne particle abrasion | 62.2 ± 2.3 B a | 68.4 ± 2.7 A b | 54.0 ± 1.9 C c | 57.2 ± 3.1 C b | 56.8 ± 2.2 C c | 65.0 ± 2.4 A a |
Er,Cr:YSGG laser 2 W | 54.8 ± 2.2 C b | 62.8 ± 5.2 A c | 58.8 ± 2.6 B b | 66.6 ± 2.1 A a | 66.2 ± 1.8 A a | 69.0 ± 2.6 A a |
Er,Cr:YSGG laser 3 W | 63.0 ± 3.2 C a | 74.4 ± 1.3 A a | 65.6 ± 1.5 C a | 63.2 ± 2.4 C ab | 62.8 ± 2.2 C b | 70.8 ± 2.4 B a |
Surface Treatment | Amber Mill—Non-Aged | Amber Mill—Aged | Vita Suprinity—Non-Aged | Vita Suprinity—Aged | IPS e.max CAD—Non-Aged | IPS e.max CAD—Aged |
---|---|---|---|---|---|---|
Control | 1.95 ± 0.66 E c | 6.87 ± 2.40 B c | 3.05 ± 1.51 D c | 7.21 ± 2.67 B a | 7.12 ± 1.34 C b | 9.50 ± 1.43 A b c |
Hydrofluoric acid etching | 9.59 ± 1.98 B a | 13.58 ± 3.18 A a | 10.18 ± 1.80 B a | 7.38 ± 1.61 C a | 10.86 ± 1.51 AB a | 12.05 ± 2.25 A a |
Airborne particle abrasion | 7.80 ± 2.03 B b | 11.11 ± 2.86 A b | 7.80 ± 1.79 B b | 4.75 ± 1.89 C b | 6.70 ± 1.40 B b | 10.18 ± 1.67 A b |
Er,Cr:YSGG laser 2 W | 9.76 ± 2.44 B a | 11.96 ± 2.92 A b | 7.55 ± 3.25 C b | 7.89 ± 3.05 C a | 6.62 ± 1.61 D b | 8.65 ± 1.46 C c |
Er,Cr:YSGG laser 3 W | 9.76 ± 2.95 A a | 11.45 ± 2.72 A b | 8.14 ± 2.03 B b | 8.48 ± 1.96 B a | 10.26 ± 1.63 C a | 12.22 ± 2.14 A a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demiroğlu, S.; Ongun, S. Influence of Surface Treatments and Thermocycling on Wettability, Roughness, and Bond Strength of Lithium Disilicate CAD/CAM Ceramics. Materials 2025, 18, 4831. https://doi.org/10.3390/ma18214831
Demiroğlu S, Ongun S. Influence of Surface Treatments and Thermocycling on Wettability, Roughness, and Bond Strength of Lithium Disilicate CAD/CAM Ceramics. Materials. 2025; 18(21):4831. https://doi.org/10.3390/ma18214831
Chicago/Turabian StyleDemiroğlu, Serpil, and Salim Ongun. 2025. "Influence of Surface Treatments and Thermocycling on Wettability, Roughness, and Bond Strength of Lithium Disilicate CAD/CAM Ceramics" Materials 18, no. 21: 4831. https://doi.org/10.3390/ma18214831
APA StyleDemiroğlu, S., & Ongun, S. (2025). Influence of Surface Treatments and Thermocycling on Wettability, Roughness, and Bond Strength of Lithium Disilicate CAD/CAM Ceramics. Materials, 18(21), 4831. https://doi.org/10.3390/ma18214831