Advancing Viscoelastic Material Characterization Through Computer Vision and Robotics: MIRANDA and RELAPP
Abstract
1. Introduction
Theoretical Background
2. Materials and Methods
2.1. Proof-of-Concept Tests
- Demonstrate MIRANDA’s ability to provide real-time, non-invasive analysis of viscoelastic properties and motion dynamics.
- Assess RELAPP’s precision in actively deforming materials and accurately measuring their real-time rheological response.
- Compare the analytical insights provided by both MIRANDA and RELAPP, highlighting their synergistic application for a comprehensive material characterization.
- Validate the portability, cost-effectiveness, and operational efficiency of both devices as next-generation solutions for viscoelastic measurement and motion analysis.
2.2. Materials Tested
- Foams: Black, Yellow, Green, and White Foams, representing highly elastic materials.
- Doughs and Pastes: Soft Dough (standard, yellow, white), various Flour Doughs (W-values 90, 119, 262, 400, 461), White Modeling Clay, and Stelan Flexible Paste, representing a range of plasto-visco-elastic behaviors.
- Plasticine and Sand: Plasticine and kinetic sand, to assess plastic and plasto-visco-elastic properties.
- Viscoelastic Materials: A specific Viscoelastic Material and a soft toy made of wheat flour.
- Rigid and Other: Wood (as a rigid reference) and a human hand.
2.3. MIRANDA Experimental Setup and Data Acquisition
- Shape deformation: Changes in the material’s geometric dimensions.
- Texture dynamics: Alterations in surface patterns and visual characteristics.
- Viscoelastic properties: Quantified through “perception units” over time, providing a non-invasive measure of how the material deforms and recovers.
2.4. RELAPP Experimental Setup and Data Acquisition
- Deformative force: Measured in Newtons (N), indicating the resistance of the material to applied deformation.
- Material displacement/strain: The extent of deformation under the applied force.
- Compactibility: Assessed through successive deformation cycles, providing insights into the material’s ability to withstand repeated stress.
2.5. Data Analysis and Experimental Design
3. Results and Discussion
3.1. Graphical Correlation Analysis Between RELAPP and MIRANDA
- ffinal: final resistive force (Nw)
- a_exp: parameter ‘a’ of mathematical model m1
- b_exp: parameter ‘b’ of mathematical model m1
- c_exp: parameter ‘c’ of mathematical model m1
- a: parameter ‘a’ of mathematical model m2
- b: parameter ‘b’ of mathematical model m2
- Elasticity: geometric elasticity as a percentage; deformation recovery
- Final deformation: height of the maximum deformation
- Time of Recovery (TR): recovery time in video frame units
- Parameter a: parameter ‘a’ of mathematical model m2
- Parameter b: parameter ‘b’ of mathematical model m2
Viscoelastic Interpretation
3.2. Accuracy and Repeatability of the Method
3.2.1. Elasticity of Predominantly Elastic Materials
3.2.2. Elasticity of Plastic and Plasto-Visco-Elastic Materials
- Inherent Material Variability: Plasto-visco-elastic materials like doughs can exhibit complex and highly sensitive rheological behaviors that are more susceptible to minor variations in sample preparation (such as kneading and handling of the sample) and environmental conditions like temperature and humidity.
- Method Sensitivity: While MIRANDA excels with highly elastic materials, its sensitivity to the subtle elastic components within predominantly viscous or plastic materials might lead to higher measurement noise.
- Limitations in Data Collection/Processing: The widespread presence of “NA” or “NaN” values for elasticity and its associated variability metrics for numerous materials is a critical limitation. This prevents a full assessment of the method’s performance across all material classifications and suggests either that elasticity was not a primary focus of measurement for these materials or that data acquisition/processing challenges were encountered.
3.3. Application of MIRANDA in Predicting Dough Rheological and Industrial Characteristics
3.3.1. Elasticity and Final Deformation as Indicators of Dough Strength
3.3.2. Time of Recovery (TR) as a Complex Indicator of Dough Structure
3.3.3. Internal Model Parameters
3.4. Predictive Models for Alveographic Parameters and Viscosity
- Accelerated Development Cycles: The ability to predict traditional rheological parameters quickly using MIRANDA could drastically reduce the time needed for R&D and new product development in flour milling and baking industries.
- Enhanced Continuous Quality Control: Rapid, non-destructive measurements from MIRANDA could enable real-time monitoring of flour quality, allowing for immediate adjustments in production and minimizing off-spec products.
- Reduced Reliance on Traditional Methods: While traditional methods are crucial for reference, the predictive models could offer a faster, more cost-effective alternative for routine checks, especially for parameters that are time-consuming to measure with conventional equipment.
- Insight into Material Behavior: The correlations, even if not perfect, provide valuable insights into how MIRANDA ‘s measured variables relate to established rheological properties, deepening our understanding of dough mechanics.
3.5. Comparison with Traditional Rheometers
4. Conclusions
5. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Fundamental Concepts of Deformation
- Displacement Field (): This field describes the position of each point within the material over time.
- Strain Tensor (: Represents how the material locally changes shape (stretching and angular distortion). For small deformations, the strain tensor is given by:
- Stress Tensor (: This tensor represents the internal forces acting within the material, describing the distribution of forces per unit area.
Appendix A.1.1. Constitutive Equations: Elastic vs. Viscoelastic Behavior
- Elastic Solid:
- ○
- Exhibits instantaneous and reversible response to applied stress.
- ○
- Stores energy, similar to a spring.
- ○
- Can be modeled by Hooke’s Law: , where is a stiffness tensor.
- ○
- Upon removal of the force, the material instantly returns to its original shape.
- Viscoelastic Solid:
- ○
- Exhibits time-dependent response.
- ○
- Both stores and dissipates energy, behaving like a combination of a spring and a damper.
- ○
- The stress depends on the entire history of the deformation:
Appendix A.1.2. Rheological Models for Viscoelasticity
- Kelvin-Voigt Model:
- ○
- Composed of a spring and a damper in parallel.
- ○
- Its constitutive equation is: , where is the elastic modulus and is the viscosity.
- ○
- This model accurately describes creep, where the deformation increases over time under constant stress.
- Standard Linear Solid (SLS) Model:
- ○
- More realistic, combining instantaneous and retarded deformation.
- ○
- Typically represented by a Kelvin-Voigt element in series with a spring.
- ○
- Its constitutive equation is: , where and are relaxation times and is the relaxed modulus.
Appendix A.1.3. Creep-Recovery Test
- Creep Phase: This phase, adapted for our robotic system, involves the robot’s arm engaging the material by pushing it to a pre-defined target position. While the robot aims to maintain this set position, its inherent flexibility, coupled with the material’s viscoelastic properties (like doughs), results in a progressive, coupled deformation. During this unique interaction, the evolving force exerted by the material back on the robot is continuously measured, providing a characteristic “fingerprint” of the material’s viscoelastic response under these specific, controlled conditions.
- Recovery Phase: The applied stress is removed. The material then recovers (or partially recovers) its shape, usually in a delayed and often incomplete manner.
Mathematical Models and Creep-Recovery Curve Fitting
Appendix B
- SoftDough (Soft Dough)
- Escuma Negra (Black Foam)
- Escuma Groga (Yellow Foam)
- MaToni (Human hand)
- Fusta (Wood)
- Viscoelastica (Viscoelastic Material)
- Plastilina SemiPlastic (Plasticine)
- Joguina (soft Toy composed by wheat flour)
- Escuma Verda (Green Foam)
- Escuma Blanca (White Foam)
- Soft dough groga (Yellow Soft Dough)
- Farina (Flour dought—followed by W-value, dough preparation, and half division)
- ○
- Farina 90 (Flour W = 90)
- ○
- Farina 262 (Flour W = 262)
- ○
- Farina 400 (Flour W = 400)
- ○
- Farina 461 (Flour W = 461)
- ○
- Farina 119 (Flour W = 119)
- Sorra Cinètica (Kinetic Sand)
- Pasta Modelar Blanca (White Modeling Clay)
- Soft dough blanca (White Soft Dough)
- Pasta Flexible Stelan (Stelan Flexible Paste)
Replica Analysis
- SoftDough: 6 replicas
- Escuma Negra (Black Foam): 6 replicas (3 EscumaNegra, 3 Escuma negra)
- Escuma Groga (Yellow Foam): 3 replicas
- MaToni: 3 replicas
- Fusta (Wood): 3 replicas (Fusta appears 3 times, with two entries separated, implying 3 distinct samples)
- Viscoelastica (Viscoelastic Material): 6 replicas
- Plastilina SemiPlastic (Plasticine): 3 replicas
- Joguina (Toy): 6 replicas
- Escuma Verda (Green Foam): 6 replicas (3 EscumaVerda, 3 Escuma verda)
- Escuma Blanca (White Foam): 6 replicas
- Soft dough groga (Yellow Soft Dough): 3 replicas
- Sorra Cinètica (Kinetic Sand): 3 replicas
- Pasta Modelar Blanca (White Modeling Clay): 6 replicas
- Soft dough blanca (White Soft Dough): 3 replicas
- Pasta Flexible Stelan (Stelan Flexible Paste): 3 replicas
RELAPP | MIRANDA | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Material | Statistics | Ffinal | a_exp | b_exp | c_exp | a | b | Elasticity | Maximum Deformation | Final Deformation | Time of Recovery (TR) | Parameter a (Exponential) | Parameter b (Exponential) |
Escuma blanca | Mitjana | 18.953 | 3.960 | −0.001 | 18.500 | −0.070 | 3.475 | 90.133 | 0.997 | 0.099 | 1.847 | −0.004 | 0.052 |
Escuma blanca | SD | 0.103 | 0.169 | 0.000 | 0.005 | 0.001 | 0.002 | 8.142 | 0.001 | 0.081 | 0.695 | 0.001 | 0.000 |
Escuma blanca | N | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 |
Escuma blanca | CV (%) | 0.543 | 4.269 | −6.195 | 0.026 | −0.969 | 0.052 | 9.034 | 0.116 | 82.524 | 37.651 | −12.191 | 0.686 |
Escuma blanca | MAD | 0.090 | 0.170 | 0.000 | 0.001 | 0.001 | 0.002 | 4.937 | 0.001 | 0.049 | 0.979 | 0.001 | 0.000 |
Escuma negra | Mitjana | 21.990 | 3.546 | −0.001 | 21.552 | −0.049 | 3.466 | 96.747 | 0.999 | 0.033 | 2.287 | −0.006 | 0.049 |
Escuma negra | SD | 0.371 | 0.956 | 0.000 | 0.477 | 0.009 | 0.068 | 0.886 | 0.001 | 0.009 | 0.354 | 0.000 | 0.001 |
Escuma negra | N | 6.000 | 6.000 | 6.000 | 6.000 | 6.000 | 6.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 |
Escuma negra | CV (%) | 1.687 | 26.955 | −10.789 | 2.214 | −18.446 | 1.958 | 0.915 | 0.080 | 27.220 | 15.476 | −4.660 | 2.987 |
Escuma negra | MAD | 0.398 | 0.796 | 0.000 | 0.599 | 0.010 | 0.065 | 0.282 | 0.001 | 0.003 | 0.252 | 0.000 | 0.000 |
Escuma verda | Mitjana | 18.939 | 4.473 | −0.001 | 18.438 | −0.078 | 3.530 | 88.650 | 0.997 | 0.114 | 1.300 | −0.004 | 0.051 |
Escuma verda | SD | NA | NA | NA | NA | NA | NA | 4.312 | 0.002 | 0.043 | 0.596 | 0.000 | 0.002 |
Escuma verda | N | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 |
Escuma verda | CV (%) | NA | NA | NA | NA | NA | NA | 4.864 | 0.241 | 37.989 | 45.826 | −7.830 | 3.839 |
Escuma verda | MAD | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 6.079 | 0.000 | 0.061 | 0.267 | 0.000 | 0.002 |
EscumaGroga | Mitjana | 21.637 | 3.103 | −0.001 | 21.203 | −0.048 | 3.441 | NaN | NaN | NaN | NaN | NaN | NaN |
EscumaGroga | SD | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
EscumaGroga | N | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
EscumaGroga | CV (%) | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
EscumaGroga | MAD | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | NA | NA | NA | NA | NA | NA |
EscumaNegra | Mitjana | 24.278 | 3.320 | −0.001 | 23.789 | −0.042 | 3.514 | NaN | NaN | NaN | NaN | NaN | NaN |
EscumaNegra | SD | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
EscumaNegra | N | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
EscumaNegra | CV (%) | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
EscumaNegra | MAD | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | NA | NA | NA | NA | NA | NA |
EscumaVerda | Mitjana | 19.407 | 5.289 | −0.001 | 18.849 | −0.087 | 3.630 | NaN | NaN | NaN | NaN | NaN | NaN |
EscumaVerda | SD | 0.564 | 0.706 | 0.000 | 0.774 | 0.010 | 0.050 | NA | NA | NA | NA | NA | NA |
EscumaVerda | N | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
EscumaVerda | CV (%) | 2.907 | 13.341 | −7.526 | 4.108 | −11.735 | 1.390 | NA | NA | NA | NA | NA | NA |
EscumaVerda | MAD | 0.591 | 0.740 | 0.000 | 0.812 | 0.011 | 0.053 | NA | NA | NA | NA | NA | NA |
Farina 119 | Mitjana | 7.669 | 7.935 | −0.001 | 6.988 | −0.285 | 4.204 | 5.200 | 0.995 | 0.948 | 1.785 | 0.000 | 0.046 |
Farina 119 | SD | 0.416 | 0.585 | 0.000 | 0.377 | 0.005 | 0.024 | 2.857 | 0.005 | 0.029 | 1.082 | 0.000 | 0.000 |
Farina 119 | N | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 |
Farina 119 | CV (%) | 5.431 | 7.367 | −0.701 | 5.397 | −1.614 | 0.578 | 54.937 | 0.490 | 3.013 | 60.609 | −124.512 | 0.663 |
Farina 119 | MAD | 0.437 | 0.613 | 0.000 | 0.395 | 0.005 | 0.025 | 2.995 | 0.005 | 0.030 | 1.134 | 0.000 | 0.000 |
Farina 262 | Mitjana | 7.820 | 6.864 | −0.001 | 7.243 | −0.265 | 4.046 | 4.195 | 0.999 | 0.958 | 2.545 | 0.000 | 0.046 |
Farina 262 | SD | 1.380 | 0.666 | 0.000 | 1.312 | 0.031 | 0.101 | 1.885 | 0.001 | 0.019 | 0.047 | 0.000 | 0.000 |
Farina 262 | N | 4.000 | 4.000 | 4.000 | 4.000 | 4.000 | 4.000 | 4.000 | 4.000 | 4.000 | 4.000 | 4.000 | 4.000 |
Farina 262 | CV (%) | 17.643 | 9.707 | −3.700 | 18.115 | −11.857 | 2.493 | 44.933 | 0.096 | 1.967 | 1.829 | −122.866 | 0.315 |
Farina 262 | MAD | 1.207 | 0.688 | 0.000 | 1.094 | 0.014 | 0.104 | 1.520 | 0.001 | 0.015 | 0.030 | 0.000 | 0.000 |
Farina 400 | Mitjana | 8.775 | 7.278 | −0.001 | 8.153 | −0.247 | 4.043 | 4.185 | 0.999 | 0.958 | 1.730 | 0.000 | 0.046 |
Farina 400 | SD | 0.081 | 0.159 | 0.000 | 0.085 | 0.005 | 0.043 | 1.874 | 0.001 | 0.019 | 1.103 | 0.000 | 0.000 |
Farina 400 | N | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 |
Farina 400 | CV (%) | 0.922 | 2.180 | −1.407 | 1.039 | −1.937 | 1.066 | 44.775 | 0.057 | 1.956 | 63.762 | −28.284 | 0.295 |
Farina 400 | MAD | 0.085 | 0.166 | 0.000 | 0.089 | 0.005 | 0.045 | 1.964 | 0.001 | 0.020 | 1.156 | 0.000 | 0.000 |
Farina 461 | Mitjana | 8.428 | 7.465 | −0.001 | 7.764 | −0.258 | 4.081 | 5.915 | 0.991 | 0.941 | 2.490 | 0.000 | 0.046 |
Farina 461 | SD | 1.119 | 0.217 | 0.000 | 1.053 | 0.024 | 0.047 | 0.983 | 0.011 | 0.010 | 0.028 | 0.000 | 0.000 |
Farina 461 | N | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 |
Farina 461 | CV (%) | 13.272 | 2.910 | −3.050 | 13.568 | −9.337 | 1.146 | 16.617 | 1.149 | 1.045 | 1.136 | −150.192 | 0.850 |
Farina 461 | MAD | 1.173 | 0.228 | 0.000 | 1.104 | 0.025 | 0.049 | 1.030 | 0.012 | 0.010 | 0.030 | 0.000 | 0.000 |
Farina 90 | Mitjana | 8.055 | 7.491 | −0.001 | 7.425 | −0.262 | 4.069 | 1.380 | 0.991 | 0.986 | 1.410 | 0.000 | 0.046 |
Farina 90 | SD | 0.932 | 0.918 | 0.000 | 0.853 | 0.010 | 0.060 | NA | NA | NA | NA | NA | NA |
Farina 90 | N | 4.000 | 4.000 | 4.000 | 4.000 | 4.000 | 4.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Farina 90 | CV (%) | 11.567 | 12.249 | −1.257 | 11.495 | −3.868 | 1.467 | NA | NA | NA | NA | NA | NA |
Farina 90 | MAD | 0.954 | 0.673 | 0.000 | 0.923 | 0.010 | 0.020 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Fusta | Mitjana | 29.187 | 0.924 | −0.001 | 28.473 | −0.006 | 3.421 | NaN | NaN | NaN | NaN | NaN | NaN |
Fusta | SD | 0.367 | 1.472 | 0.001 | 1.420 | 0.005 | 0.034 | NA | NA | NA | NA | NA | NA |
Fusta | N | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Fusta | CV (%) | 1.257 | 159.338 | −87.269 | 4.987 | −75.513 | 0.982 | NA | NA | NA | NA | NA | NA |
Fusta | MAD | 0.317 | 0.023 | 0.001 | 1.033 | 0.002 | 0.018 | NA | NA | NA | NA | NA | NA |
Joguina | Mitjana | 22.661 | 0.234 | −0.001 | 22.704 | −0.012 | 3.208 | NaN | NaN | NaN | NaN | NaN | NaN |
Joguina | SD | 0.408 | 0.287 | 0.001 | 0.346 | 0.008 | 0.046 | NA | NA | NA | NA | NA | NA |
Joguina | N | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Joguina | CV (%) | 1.801 | 122.982 | −93.260 | 1.524 | −70.094 | 1.422 | NA | NA | NA | NA | NA | NA |
Joguina | MAD | 0.428 | 0.301 | 0.001 | 0.363 | 0.009 | 0.048 | NA | NA | NA | NA | NA | NA |
Pasta flexible Stelan | Mitjana | 8.547 | 13.316 | −0.001 | 7.414 | −0.308 | 4.543 | 6.330 | 0.995 | 0.937 | 2.520 | 0.000 | 0.046 |
Pasta flexible Stelan | SD | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Pasta flexible Stelan | N | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Pasta flexible Stelan | CV (%) | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Pasta flexible Stelan | MAD | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Pasta modelar blanca | Mitjana | 23.891 | 4.444 | −0.001 | 23.095 | −0.055 | 3.599 | NaN | NaN | NaN | NaN | NaN | NaN |
Pasta modelar blanca | SD | 0.581 | 0.300 | 0.000 | 0.664 | 0.000 | 0.024 | NA | NA | NA | NA | NA | NA |
Pasta modelar blanca | N | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Pasta modelar blanca | CV (%) | 2.431 | 6.745 | −8.772 | 2.876 | −0.528 | 0.662 | NA | NA | NA | NA | NA | NA |
Pasta modelar blanca | MAD | 0.609 | 0.314 | 0.000 | 0.696 | 0.000 | 0.025 | NA | NA | NA | NA | NA | NA |
PlastilinaSemiPlastic | Mitjana | 6.135 | 10.062 | −0.002 | 6.279 | −0.346 | 4.441 | NaN | NaN | NaN | NaN | NaN | NaN |
PlastilinaSemiPlastic | SD | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
PlastilinaSemiPlastic | N | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
PlastilinaSemiPlastic | CV (%) | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
PlastilinaSemiPlastic | MAD | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | NA | NA | NA | NA | NA | NA |
Soft dough blanca | Mitjana | 6.638 | 6.448 | −0.001 | 6.512 | −0.308 | 4.226 | 13.080 | 1.000 | 0.869 | 2.330 | 0.000 | 0.046 |
Soft dough blanca | SD | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Soft dough blanca | N | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Soft dough blanca | CV (%) | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Soft dough blanca | MAD | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Soft dough groga | Mitjana | 9.306 | 7.320 | −0.001 | 8.476 | −0.226 | 3.956 | 27.910 | 0.999 | 0.721 | 2.780 | −0.001 | 0.046 |
Soft dough groga | SD | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Soft dough groga | N | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Soft dough groga | CV (%) | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Soft dough groga | MAD | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
SoftDough | Mitjana | 9.097 | 9.431 | −0.001 | 8.346 | −0.269 | 4.256 | NaN | NaN | NaN | NaN | NaN | NaN |
SoftDough | SD | 1.334 | 0.245 | 0.000 | 1.251 | 0.025 | 0.036 | NA | NA | NA | NA | NA | NA |
SoftDough | N | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
SoftDough | CV (%) | 14.668 | 2.599 | −5.424 | 14.992 | −9.211 | 0.850 | NA | NA | NA | NA | NA | NA |
SoftDough | MAD | 1.399 | 0.257 | 0.000 | 1.312 | 0.026 | 0.038 | NA | NA | NA | NA | NA | NA |
Sorra cinètica | Mitjana | 5.902 | 8.503 | −0.001 | 5.219 | −0.358 | 4.498 | 13.270 | 0.999 | 0.867 | 2.060 | 0.000 | 0.046 |
Sorra cinètica | SD | 0.775 | 0.861 | 0.000 | 0.706 | 0.023 | 0.063 | 1.061 | 0.000 | 0.011 | 0.184 | 0.000 | 0.000 |
Sorra cinètica | N | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 |
Sorra cinètica | CV (%) | 13.126 | 10.125 | −0.482 | 13.523 | −6.479 | 1.407 | 7.993 | 0.035 | 1.223 | 8.925 | −44.698 | 0.063 |
Sorra cinètica | MAD | 0.041 | 1.182 | 0.000 | 0.137 | 0.022 | 0.022 | 1.112 | 0.000 | 0.011 | 0.193 | 0.000 | 0.000 |
Viscoelastica | Mitjana | 19.525 | 3.953 | −0.001 | 18.995 | −0.074 | 3.529 | NaN | NaN | NaN | NaN | NaN | NaN |
Viscoelastica | SD | 0.804 | 0.614 | 0.000 | 0.723 | 0.007 | 0.012 | NA | NA | NA | NA | NA | NA |
Viscoelastica | N | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 2.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Viscoelastica | CV (%) | 4.117 | 15.524 | −18.312 | 3.806 | −9.663 | 0.353 | NA | NA | NA | NA | NA | NA |
Viscoelastica | MAD | 0.843 | 0.643 | 0.000 | 0.758 | 0.007 | 0.013 | NA | NA | NA | NA | NA | NA |
maToni | Mitjana | 23.244 | −0.368 | 0.000 | 24.795 | −0.039 | 3.462 | NaN | NaN | NaN | NaN | NaN | NaN |
maToni | SD | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
maToni | N | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
maToni | CV (%) | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
maToni | MAD | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | NA | NA | NA | NA | NA | NA |
References
- Phan-Thien, N.; Safari-Ardi, M. Linear viscoelastic properties of flour–water doughs at different water concentrations. J. Non-Newton. Fluid Mech. 1998, 74, 137–150. [Google Scholar] [CrossRef]
- Goudoulas, T.B.; Rosentrater, K.A. Rheological properties of food materials. In Food Materials Science and Engineering; Academic Press: Cambridge, MA, USA, 2018; pp. 237–270. [Google Scholar]
- Barnes, H.A. A Handbook of Elementary Rheology; University of Wales Institute of Non-Newtonian Fluid Mechanics: Aberystwyth, UK, 2009. [Google Scholar]
- Schramm, G. A Practical Approach to Rheology and Rheometry; Gebrueder HAAKE GmbH: Karlsruhe, Germany, 2006. [Google Scholar]
- Macosko, C.W. Rheology: Principles, Measurements, and Applications; Wiley-VCH: New York, NY, USA, 1994. [Google Scholar]
- Monleón-Getino, A.; Fernández, S. Calidad industrial del trigo y la harina: Técnicas de control estadístico de procesos y software. Aliment. Equipos Tecnol. 2008, 27, 32–35. [Google Scholar]
- Muller, H.G. Rheology and the Conventional Bread and Biscuit-Making Process; Cereals & Grains Association: St. Paul, MN, USA, 1975. [Google Scholar]
- Laskowski, D.; Laskowski, J. Evaluation of dough rheological properties by use of consistograph and alveograph. Acta Agrophys. 2003, 82, 23–32. [Google Scholar]
- Codină, G.G.; Mironeasa, S.; Bordei, D.; Leahu, A. Mixolab Versus Alveograph and Falling Number. Czech J. Food Sci. 2010, 28, 185–191. [Google Scholar] [CrossRef]
- Dahl, J.F.; Schlangen, M.; van der Goot, A.J.; Corredig, M. Predicting rheological parameters of food biopolymer mixtures using machine learning. Food Hydrocoll. 2025, 160, 110786. [Google Scholar] [CrossRef]
- Lee, D.; Jeong, S.; Yun, S.; Lee, S. Artificial intelligence-based prediction of the rheological properties of hydrocolloids for plant-based meat analogues. J. Sci. Food Agric. 2024, 104, 5114–5123. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Li, Y.; Wei, X. Computer vision-based methods for material property characterization: A review. J. Mater. Sci. Technol. 2021, 77, 10–25. [Google Scholar]
- Almacellas-Canals, E. Classification of Viscoelastic Materials Based on Rheological Parameters Estimated Using Computer Vision and Deep Learning Techniques. Bachelor’s Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2025. [Google Scholar]
- Monleón-Getino, T.; Justel-Pizarro, J.; Sahuquillo, À. RELAPP: A New Portable Electronic Rheometer for the Analysis of Viscoelastic Materials Based on Artificial Intelligence. In Advanced Research in Technologies, Information, Innovation and Sustainability; Guarda, T., Portela, F., Diaz-Nafria, J.M., Eds.; Springer: Cham, Switzerland, 2022; pp. 71–83. [Google Scholar]
- Anssari-Benam, A.; Hossain, M. A pseudo-hyperelastic model incorporating the rate effects for isotropic rubber-like materials. J. Mech. Phys. Solids 2023, 179, 105347. [Google Scholar] [CrossRef]
- Ding, S.; Ding, S. Analytical coefficient of restitution model linking viscoelasticity and improved contact force model. Int. J. Mech. Sci. 2025, 299, 110388. [Google Scholar] [CrossRef]
- Lakes, R.S. Viscoelastic Materials; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. Transport Phenomena, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
Matherial Type | Description |
---|---|
Escuma Negra (Black Foam), Escuma Groga (Yellow Foam), Escuma Verda (Green Foam), Escuma Blanca (White Foam) | 100% Elastic (They exhibit purely elastic behavior, deforming under stress and returning to their original shape when the stress is removed without energy dissipation). |
Fusta (Wood) | Rigid (It is a stiff material that resists deformation under applied force, with minimal change in shape or volume). |
Sorra Cinètica (Kinetic Sand) All Other Materials | 100% Plastic (It behaves as a purely plastic material, deforming permanently once a certain stress threshold is exceeded, without recovering its original shape). Plasto-Visco-Elastic (These materials exhibit a combination of plastic, viscous, and elastic behaviors. They can deform elastically, flow viscously over time, and also undergo permanent deformation (plasticity) when sufficiently stressed. |
Material (Label) | P (mm) | L (mm) | W (10−4 J) |
---|---|---|---|
Farina 90 | 38.091 | 125.693 | 115.796 |
Farina 119 | 40.913 | 110.834 | 118.500 |
Farina 262 | 69.894 | 119.646 | 261.522 |
Farina 400 | 119.039 | 95.471 | 428.033 |
Farina 461 | 115.334 | 105.414 | 460.580 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monleón-Getino, A.; Madarnás-Gómez, V.; Cobos-Soler, M.; Almacellas, E.; Ramos-Castro, J.; Bielsa, X.; López-Brosa, P.; Sahuquillo-Estrugo, À.; Marsà-González, I.; Rodríguez-Mena, A. Advancing Viscoelastic Material Characterization Through Computer Vision and Robotics: MIRANDA and RELAPP. Materials 2025, 18, 4827. https://doi.org/10.3390/ma18214827
Monleón-Getino A, Madarnás-Gómez V, Cobos-Soler M, Almacellas E, Ramos-Castro J, Bielsa X, López-Brosa P, Sahuquillo-Estrugo À, Marsà-González I, Rodríguez-Mena A. Advancing Viscoelastic Material Characterization Through Computer Vision and Robotics: MIRANDA and RELAPP. Materials. 2025; 18(21):4827. https://doi.org/10.3390/ma18214827
Chicago/Turabian StyleMonleón-Getino, Antonio, Victor Madarnás-Gómez, Mario Cobos-Soler, Eduard Almacellas, Juan Ramos-Castro, Xavier Bielsa, Pere López-Brosa, Àngels Sahuquillo-Estrugo, Inés Marsà-González, and Alejandro Rodríguez-Mena. 2025. "Advancing Viscoelastic Material Characterization Through Computer Vision and Robotics: MIRANDA and RELAPP" Materials 18, no. 21: 4827. https://doi.org/10.3390/ma18214827
APA StyleMonleón-Getino, A., Madarnás-Gómez, V., Cobos-Soler, M., Almacellas, E., Ramos-Castro, J., Bielsa, X., López-Brosa, P., Sahuquillo-Estrugo, À., Marsà-González, I., & Rodríguez-Mena, A. (2025). Advancing Viscoelastic Material Characterization Through Computer Vision and Robotics: MIRANDA and RELAPP. Materials, 18(21), 4827. https://doi.org/10.3390/ma18214827