Alloy Strengthening Mechanisms, Microstructure Control, and Performance Optimization
1. Introduction and Scope
2. Contributions
3. Outlook
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Choi, K.; Lee, S.; Bae, D. Natural and Artificial Aging Effects on the Deformation Behaviors of Al–Mg–Zn Alloy Sheets. Materials 2024, 17, 4478. https://doi.org/10.3390/ma17184478.
- Gołasz, P.; Płoska, A.; Korniienko, V.; Diedkova, K.; Varava, Y.; Zieliński, R.; Pogorielov, M.; Simka, W. Modification of Ti13Nb13Zr Alloy Surface via Plasma Electrolytic Oxidation and Silver Nanoparticles Decorating. Materials 2025, 18, 349. https://doi.org/10.3390/ma18020349.
- Jiang, H.; Jin, J.; Fang, Y.; Gou, G.; Lu, W.; Zhang, Z.; Zhou, H.; Sun, H.; Feng, J.; Chen, J.; Fu, Z. Effects of Pre-Deformation in Corrosion Fatigue Crack Growth of Al-Mg-Zn Alloy. Materials 2025, 18, 365. https://doi.org/10.3390/ma18020365.
- Ji, Z.; Nan, H.; Li, G.; Guo, S.; Ye, Y.; Wang, H.; Zhou, P. Synergistic Effects of Deep Cryogenic and Pulsed Magnetic Field Treatments on the Microstructure and Tensile Properties of Aero-TC4 Titanium Alloy. Materials 2025, 18, 817. https://doi.org/10.3390/ma18040817.
- Li, H.; Jin, J.; Zhang, Z.; Yu, J.; Sun, H.; Sun, S.; Tang, W.; Gou, G. Mechanical Properties and σ-Phase Precipitation in FeCoCrNiMox (x = 0, 0.4, 0.5, 0.8, 1.3) High-Entropy Alloys: Insights from First-Principles Study. Materials 2025, 18, 1267. https://doi.org/10.3390/ma18061267.
- Huang, J.; Zhao, Z.; Huang, X.; Liu, T.; Ji, H. Finite Element Simulation and Optimization of Process Parameters for Titanium Chip Crusher. Materials 2025, 18, 1894. https://doi.org/10.3390/ma18091894.
- Zang, D.; Becker, J.; Betke, U.; Hasemann, G.; Khanchych, K.; Gorr, B.; Krüger, M. Phase Evolution During High-Energy Ball Milling and Annealing of Ti-Doped Mo-V-Si-B Alloys. Materials 2025, 18, 2494. https://doi.org/10.3390/ma18112494.
- Cai, J.; Jiang, Q.; Feng, K.; Zhou, H. Tailoring Microstructure and Properties of W-Mo-Cu Composites Fabricated via Infiltration Sintering: Effects of Graphene Addition and Skeleton Relative Density. Materials 2025, 18, 2539. https://doi.org/10.3390/ma18112539.
- Huang, Y.; Yen, Y.; Hung, F. A Study on Thermally Fatigued Phase Transformation and Bending Fracture Mechanisms of 310S Stainless Steel. Materials 2025, 18, 2654. https://doi.org/10.3390/ma18112654.
- Jóźwik, P.; Polkowski, W.; Panas, A.; Bojar, Z. Microstructure Evolution of Ni3Al-Based Intermetallic Alloy Strips After Hot Rolling. Materials 2025, 18, 3016. https://doi.org/10.3390/ma18133016.
- Šmalc, J.; Zaky, A.; Markoli, B.; Šturm, R. Microstructural Stability and High-Temperature Mechanical Behavior of Al–Ni–Zr Alloy Strengthened by L12-Al3Zr Precipitates. Materials 2025, 18, 3068. https://doi.org/10.3390/ma18133068.
- Löschner, P.; Niesłony, P.; Kołodziej, S. Parameter Sensitivity Study of the Johnson–Cook Model in FEM Turning of Ti6Al4V Alloy. Materials 2025, 18, 3351. https://doi.org/10.3390/ma18143351.
- Ren, X.; Fan, Z.; Jia, Z.; Shen, Y.; You, H. Numerical Simulation Study on Non-Axisymmetric Die-Less Spinning with a Right-Angle Groove in the Tube. Materials 2025, 18, 3858. https://doi.org/10.3390/ma18163858.
- Xiao, Y.; Zhou, H.; Liu, P.; Chen, L. Gleeble-Simulated Ultra-Fast Cooling Unlocks Strength–Ductility Synergy in Fully Martensitic Ti-6Al-4V. Materials 2025, 18, 4572. https://doi.org/10.3390/ma18194572.
References
- Fan, Z.H.; Tian, Y.B.; Liu, Z.Q.; Shi, C.; Zhao, Y.G. Investigation of a novel finishing tool in magnetic field assisted finishing for titanium alloy Ti-6Al-4V. J. Manuf. Process. 2019, 43, 74–82. [Google Scholar] [CrossRef]
- Kang, L.M.; Yang, C. A Review on High-Strength Titanium Alloys: Microstructure, Strengthening, and Properties. Adv. Eng. Mater. 2019, 21, 27. [Google Scholar] [CrossRef]
- Fan, Z.H.; Tian, Y.B.; Zhou, Q.; Shi, C. Enhanced magnetic abrasive finishing of Ti-6Al-4V using shear thickening fluids additives. Precis. Eng.-J. Int. Soc. Precis. Eng. Nanotechnol. 2020, 64, 300–306. [Google Scholar] [CrossRef]
- Carvalho, S.R.; Horovistiz, A.; Davim, J.P. The role of roughness parameters in grading the machined surface quality in Ti-alloys. Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf. 2024, 238, 1013–1029. [Google Scholar] [CrossRef]
- Kishore, K.; Sinha, M.K.; Chauhan, S.R. A comprehensive investigation of surface morphology during grinding of Inconel 625 using conventional grinding wheels. J. Manuf. Process. 2023, 97, 87–99. [Google Scholar] [CrossRef]
- Pan, H.C.; Kang, R.; Li, J.R.; Xie, H.B.; Zeng, Z.R.; Huang, Q.Y.; Yang, C.L.; Ren, Y.P.; Qin, G.W. Mechanistic investigation of a low-alloy Mg-Ca-based extrusion alloy with high strength-ductility synergy. Acta Mater. 2020, 186, 278–290. [Google Scholar] [CrossRef]
- Zhang, Z.; Xie, J.S.; Zhang, J.H.; Wu, R.Z.; Wang, J.; Yang, X.S. Ultra-strong and ductile magnesium alloy enabled by ultrafine grains with nano-spacing solute-enriched planar defects. Int. J. Plast. 2025, 189, 104348. [Google Scholar] [CrossRef]
- Zhou, H.L.; Feng, K.Q.; Ke, S.X.; Liu, Y.F. Densification and properties investigation of W-Mo-Cu composites prepared by large current electric field sintering with different technologic parameter. J. Alloys Compd. 2018, 767, 567–574. [Google Scholar] [CrossRef]
- Zhou, H.L.; Feng, K.Q.; Xiao, Y.H.; Liu, Y.F.; Ke, S.X. Pressure effects on a novel W-Mo-Cu alloy by large current electric field sintering: Sintering behavior, microstructure and properties. J. Alloys Compd. 2019, 785, 965–971. [Google Scholar] [CrossRef]
- Zhou, H.L.; Feng, K.Q.; Liu, Y.F. Densification, microstructure, and properties of W-Mo-Cu alloys prepared with nano-sized Cu powders via large electric current sintering. Adv. Powder Technol. 2022, 33, 103703. [Google Scholar] [CrossRef]
- Zhang, L.; Yuan, Q.; Tan, J.; Dong, Q.; Lv, H.; Wang, F.L.; Tang, A.T.; Eckert, J.; Pan, F.S. Enhancing the room-temperature plasticity of magnesium alloys: Mechanisms and strategies. J. Magnes. Alloys 2024, 12, 4741–4767. [Google Scholar] [CrossRef]
- Shah, S.; Liu, M.P.; Khan, A.; Ahmad, F.; Chaudry, U.M.; Khan, M.Y.; Abdullah, M.R.; Xu, S.W.; Peng, Z. Recrystallization aspects and factors affecting their roles in Mg alloys: A comprehensive review. J. Magnes. Alloys 2025, 13, 1879–1914. [Google Scholar] [CrossRef]
- Luo, S.; Li, F.; Bao, F.Y.; Zhang, J.Y.; Wang, H.B. Development and innovations in extrusion process of aluminum and magnesium alloys: A review. J. Mater. Sci. Technol. 2025, 254, 206–227. [Google Scholar] [CrossRef]
- Lee, D.H.; Lee, G.M.; Park, S.H. Difference in extrusion temperature dependences of microstructure and mechanical properties between extruded AZ61 and AZ91 alloys. J. Magnes. Alloys 2023, 11, 1683–1696. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Li, J.Z.; Che, S.H.; Yang, Z.D.; Tian, Y.W. Chemical leveling mechanism and oxide film properties of additively manufactured Ti-6Al-4V alloy. J. Mater. Sci. 2019, 54, 13753–13766. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Yu, Y.C.; Wang, H.; Ren, L.; Yang, K. Study on mechanical behavior of Cu-bearing antibacterial titanium alloy implant. J. Mech. Behav. Biomed. Mater. 2022, 125, 6. [Google Scholar] [CrossRef]
- Zha, M.; Zhang, H.M.; Meng, X.T.; Jia, H.L.; Jin, S.B.; Sha, G.; Wang, H.Y.; Li, Y.J.; Roven, H.J. Stabilizing a severely deformed Al-7Mg alloy with a multimodal grain structure via Mg solute segregation. J. Mater. Sci. Technol. 2021, 89, 141–149. [Google Scholar] [CrossRef]
- Tang, Z.; Xu, W.; Zhao, D.Y.; Zhang, B. Improving the strength and SCC resistance of an Al-5Mg-3Zn alloy with low-angle grain boundary structure. J. Mater. Sci. Technol. 2023, 161, 63–73. [Google Scholar]
- Zhang, H.T.; Zhang, Q.D.; Wang, F.Y.; Guo, C.; Yang, D.H.; Wang, Z.; Tang, X.C.; Li, Z.P.; Nagaumi, H. Influence of Mo on microstructure, mechanical properties and intergranular corrosion properties of Al-Mg-Mn alloys. J. Alloys Compd. 2024, 1007, 16. [Google Scholar] [CrossRef]
- Guo, C.; Wang, H.; Guo, Y.Q.; Chen, Y.F.; Yang, D.H.; Fu, J.Y.; Wu, Z.B.; Zhang, H.T.; Liu, X.A.; Nagaumi, H. Understanding the strengthening mechanism and corrosion behavior of Al-Mg-Zn(-Ag) alloys treated by non-linear heating ageing. J. Alloys Compd. 2025, 1010, 16. [Google Scholar] [CrossRef]
- Tang, Z.C.; Xu, W.; Zhao, D.Y.; Zhang, B. Research Article Enhancing strength and stress corrosion cracking resistance in high-Mg Al-Mg alloys through nanostructuring and controlled annealing. J. Mater. Sci. Technol. 2025, 224, 19–34. [Google Scholar] [CrossRef]
- Yao, C.Y.; Ji, Y.C.; Ding, F.; Wen, J.H.; Qin, W.T.; Xiao, F.L.; Wang, D.; Xiao, K.; Dong, C.F. Revealing the intergranular corrosion mechanism of AA5083 alloys through experiments and atomic-scale computation. J. Mater. Sci. Technol. 2025, 216, 285–299. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, D.; Qiu, C.; Chen, D. Cyclic deformation behavior of a high-strength low-alloy (HSLA) magnesium alloy with heterostructures. J. Magnes. Alloys 2024, 12, 4610–4621. [Google Scholar] [CrossRef]
- Shen, G.W.; Chen, X.L.; Yan, J.; Fan, L.Y.; Yang, Z.; Zhang, J.; Guan, R.G. Effects of heat treatment processes on the mechanical properties, microstructure evolution, and strengthening mechanisms of Al-Mg-Zn-Cu alloy. J. Mater. Res. Technol.-JmrT 2023, 27, 5380–5388. [Google Scholar] [CrossRef]
- Han, Y.; Ma, Z.Y.; Yang, C.C.; Ding, Y.G.; Lu, P.B.; Tan, B.; Zheng, Q.L.; Liu, Z.W. Synchronized Enhancement of Electrical Conductivity and Mechanical Properties of A356 Alloy via Gd Alloying. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 2025, 16. [Google Scholar] [CrossRef]
- Lunn, K.F.; Apelian, D. Thermal and Electrical Conductivity of Aluminum Alloys: Fundamentals, structure-property relationships, and pathways to enhance conductivity. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2025, 924, 22. [Google Scholar] [CrossRef]
- Liu, Y.X.; Liu, Y.C.; Wang, P.Z.; He, Z.N.; Wang, L.Z.; Akhtar, S.; Lu, Z.D.; Jiao, X.Y.; Ge, S.J.; Zhang, Y.C.; et al. A newly-developed high-pressure die-cast Al-1.5Fe-1Ni alloy with high thermal conductivity: Design, microstructure, and properties. J. Mater. Sci. Technol. 2025, 245, 130–151. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Zhang, X.; Zhong, G.; Zhang, J.C.; Yang, Y.; Kang, D.; Li, H.T.; Jie, W.Q.; Schumacher, P.; Li, J.H. Elucidating thermal conductivity mechanism of Al-9Si based alloys with trace transition elements (Mn, Cr, V). J. Alloys Compd. 2022, 907, 13. [Google Scholar] [CrossRef]
- Zhang, H.F.; Ding, Y.T.; Li, R.M.; Gao, Y.B. Enhanced strength-ductility synergy and activation of non-basal slip in as-extruded Mg-Zn-Ca alloy via heterostructure. J. Mater. Res. Technol.-JmrT 2024, 28, 1841–1851. [Google Scholar] [CrossRef]
- Jin, Z.Z.; Zha, M.; Wang, S.Q.; Wang, S.C.; Wang, C.; Jia, H.L.; Wang, H.Y. Alloying design and microstructural control strategies towards developing Mg alloys with enhanced ductility. J. Magnes. Alloys 2022, 10, 1191–1206. [Google Scholar] [CrossRef]
- Wang, Y.; Gupta, R.K.; Sukiman, N.L.; Zhang, R.; Davies, C.H.J.; Birbilis, N. Influence of alloyed Nd content on the corrosion of an Al-5Mg alloy. Corros. Sci. 2013, 73, 181–187. [Google Scholar] [CrossRef]
- Zha, M.; Li, Y.J.; Mathiesen, R.H.; Bjorge, R.; Roven, H.J. Microstructure evolution and mechanical behavior of a binary Al-7Mg alloy processed by equal-channel angular pressing. Acta Mater. 2015, 84, 42–54. [Google Scholar] [CrossRef]
- Stemper, L.; Mitas, B.; Kremmer, T.; Otterbach, S.; Uggowitzer, P.J.; Pogatscher, S. Age-hardening of high pressure die casting AlMg alloys with Zn and combined Zn and Cu additions. Mater. Des. 2019, 181, 11. [Google Scholar] [CrossRef]
- Choi, K.; Lee, S.; Bae, D. Natural and Artificial Aging Effects on the Deformation Behaviors of Al-Mg-Zn Alloy Sheets. Materials 2024, 17, 4478. [Google Scholar] [CrossRef]
- Jiang, H.; Jin, J.; Fang, Y.; Gou, G.; Lu, W.; Zhang, Z.; Zhou, H.; Sun, H.; Feng, J.; Chen, J.; et al. Effects of Pre-Deformation in Corrosion Fatigue Crack Growth of Al-Mg-Zn Alloy. Materials 2025, 18, 365. [Google Scholar] [CrossRef]
- Šmalc, J.; Zaky, A.; Markoli, B.; Šturm, R. Microstructural Stability and High-Temperature Mechanical Behavior of Al–Ni–Zr Alloy Strengthened by L12-Al3Zr Precipitates. Materials 2025, 18, 3068. [Google Scholar] [CrossRef]
- Ren, X.; Fan, Z.; Jia, Z.; Shen, Y.; You, H. Numerical Simulation Study on Non-Axisymmetric Die-Less Spinning with a Right-Angle Groove in the Tube. Materials 2025, 18, 3858. [Google Scholar] [CrossRef]
- Golasz, P.; Ploska, A.; Korniienko, V.; Diedkova, K.; Varava, Y.; Zielinski, R.; Pogorielov, M.; Simka, W. Modification of Ti13Nb13Zr Alloy Surface via Plasma Electrolytic Oxidation and Silver Nanoparticles Decorating. Materials 2025, 18, 349. [Google Scholar] [CrossRef]
- Ji, Z.; Nan, H.; Li, G.; Guo, S.; Ye, Y.; Wang, H.; Zhou, P. Synergistic Effects of Deep Cryogenic and Pulsed Magnetic Field Treatments on the Microstructure and Tensile Properties of Aero-TC4 Titanium Alloy. Materials 2025, 18, 817. [Google Scholar] [CrossRef]
- Löschner, P.; Niesłony, P.; Kołodziej, S. Parameter Sensitivity Study of the Johnson–Cook Model in FEM Turning of Ti6Al4V Alloy. Materials 2025, 18, 3351. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhou, H.; Liu, P.; Chen, L. Gleeble-Simulated Ultra-Fast Cooling Unlocks Strength–Ductility Synergy in Fully Martensitic Ti-6Al-4V. Materials 2025, 18, 4572. [Google Scholar] [CrossRef]
- Huang, J.; Zhao, Z.; Huang, X.; Liu, T.; Ji, H. Finite Element Simulation and Optimization of Process Parameters for Titanium Chip Crusher. Materials 2025, 18, 1894. [Google Scholar] [CrossRef]
- Li, H.; Jin, J.; Zhang, Z.; Yu, J.; Sun, H.; Sun, S.; Tang, W.; Gou, G. Mechanical Properties and sigma-Phase Precipitation in FeCoCrNiMo(x) (x = 0, 0.4, 0.5, 0.8, 1.3) High-Entropy Alloys: Insights from First-Principles Study. Materials 2025, 18, 1267. [Google Scholar] [CrossRef]
- Zang, D.; Becker, J.; Betke, U.; Hasemann, G.; Khanchych, K.; Gorr, B.; Kruger, M. Phase Evolution During High-Energy Ball Milling and Annealing of Ti-Doped Mo-V-Si-B Alloys. Materials 2025, 18, 2494. [Google Scholar] [CrossRef]
- Cai, J.; Jiang, Q.; Feng, K.; Zhou, H. Tailoring Microstructure and Properties of W-Mo-Cu Composites Fabricated via Infiltration Sintering: Effects of Graphene Addition and Skeleton Relative Density. Materials 2025, 18, 2539. [Google Scholar] [CrossRef]
- Huang, Y.T.; Yen, Y.W.; Hung, F.Y. A Study on Thermally Fatigued Phase Transformation and Bending Fracture Mechanisms of 310S Stainless Steel. Materials 2025, 18, 2654. [Google Scholar] [CrossRef]
- Jóźwik, P.; Polkowski, W.; Panas, A.J.; Bojar, Z. Microstructure Evolution of Ni3Al-Based Intermetallic Alloy Strips After Hot Rolling. Materials 2025, 18, 3016. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Feng, K. Alloy Strengthening Mechanisms, Microstructure Control, and Performance Optimization. Materials 2025, 18, 4808. https://doi.org/10.3390/ma18204808
Zhou H, Feng K. Alloy Strengthening Mechanisms, Microstructure Control, and Performance Optimization. Materials. 2025; 18(20):4808. https://doi.org/10.3390/ma18204808
Chicago/Turabian StyleZhou, Hongling, and Keqin Feng. 2025. "Alloy Strengthening Mechanisms, Microstructure Control, and Performance Optimization" Materials 18, no. 20: 4808. https://doi.org/10.3390/ma18204808
APA StyleZhou, H., & Feng, K. (2025). Alloy Strengthening Mechanisms, Microstructure Control, and Performance Optimization. Materials, 18(20), 4808. https://doi.org/10.3390/ma18204808