Coupling Model of Electrolytic Proportion and Overcutting Depth in the Construction of Electrolytic Grinding Honeycomb Sealing Faces
Abstract
1. Introduction
2. Analysis of the Principles of Mechanical Grinding and Electrolytic Machining Removal
3. Parameter Testing and Analysis
3.1. Theoretical Electrolysis Calculation
3.1.1. Measurement of Actual Volume Electrolytic Equivalent
3.1.2. Machining Current Measurement and Analysis
3.1.3. Actual Electrolytic Equivalent Fitting Prediction
3.2. Calculation and Analysis of Electrolysis Proportion and Overcutting Depth
3.2.1. Electrolysis Proportion
3.2.2. Overcutting Depth
4. Establishment of a Mathematical Model for Fitting Electrolysis Proportion and Overcutting Depth
4.1. Model Establishment
4.2. Model Validation
5. Results and Discussion
6. Conclusions
- A theoretical formula for the electrolytic removal rate of the surface of electrolytic honeycomb materials is proposed, and a fitting equation for the actual electrochemical equivalent and electric charge is provided to calculate the theoretical electrolytic removal rate of ECG.
- A mathematical model was developed to fit the coupled relationship between the electrolysis proportion and the overcutting depth. The model has a confidence level of 95% and a validation error of approximately 8%.
- The test results show that excessive voltage increases excessive corrosion, excessive feed rate causes severe plastic deformation of the honeycomb surface, and increasing the voltage can increase the feed rate of electrolysis-dominated processing.
- By selecting machining parameters through model fitting, the final overcutting depth on the honeycomb surface was reduced to less than 0.01 mm, thus meeting the machining requirements. The mathematical model for overcutting depth provides guidance for dimensional control of honeycomb sealing surfaces during electrolytic grinding.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, H.J.; Kang, Y.J.; Kim, W.; Lim, W.S.; Park, S.; Kwak, J.S. Improvement of labyrinth seal performance using the partial honeycomb lands. Aerosp. Sci. Technol. 2024, 148, 109082. [Google Scholar] [CrossRef]
- Gu, C.; Zhang, W.; Yang, X.; Wu, K.; Yin, L. Numerical investigation on leakage and rotordynamic performance of the honeycomb seal with swirl-reverse rings. Chin. J. Aeronaut. 2022, 35, 87–100. [Google Scholar] [CrossRef]
- Cao, T.; Wu, D.; Li, H.; Liu, X.; Wang, H. Automatic detection on wear features of aero-engine honeycomb sealing ring. Measurement 2025, 250, 117138. [Google Scholar] [CrossRef]
- Yehia, H.M.; Hakim, M.; El-Assal, A. Effect of the Al2O3 powder addition on the metal removal rate and the surface roughness of the electrochemical grinding machining. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2020, 234, 1538–1548. [Google Scholar] [CrossRef]
- Pathak, P.; Dzhurinskiy, D.; Elkin, A.; Shornikov, P.; Dautov, S.; Ivanov, V. Enhanced High-Temperature YSZ-polyester Abradable Honeycomb Seal Structures. J. Therm. Spray. Tech. 2022, 31, 307–314. [Google Scholar] [CrossRef]
- Simms, N.J.; Norton, J.F.; McColvin, G. Performance of candidate gas turbine abradeable seal materials in high temperature combustion atmospheres. Mater. Corros. 2005, 56, 765–777. [Google Scholar] [CrossRef]
- Soler, D.; Saez De Buruaga, M.; Arrazola, P.J. Experimental investigation of contact forces and temperatures in rubbing interactions of honeycomb interstate seals. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1193, 012070. [Google Scholar] [CrossRef]
- Du, H.; Liu, Z.; Zhang, X.; Jiao, Y.; Che, R. Improving the sealing performance of honeycomb seal by drilling double wall-holes. Int. Commun. Heat Mass Transf. 2024, 155, 107562. [Google Scholar] [CrossRef]
- Yan, X.; Wang, H.; He, K. Numerical investigations into the rubbing wear behavior of honeycomb seal. J. Mech. Sci. Technol. 2023, 37, 4375–4390. [Google Scholar] [CrossRef]
- Ma, X.; Jiao, F.; Chen, F.; Niu, Y.; Li, C.; Tong, J.; Bie, W. Effects of ultrasonic vibration on the machining mechanism of internal cylindrical ultrasonic-assisted electrochemical hybridized grinding of bearing ring: Experimental study. J. Manuf. Process. 2025, 150, 129–146. [Google Scholar] [CrossRef]
- Yang, G.; Ming, P.; Niu, S.; Qin, G.; Liu, H.; Li, D.; Zhang, A. An Investigation of the Efficient–Precise Continuous Electrochemical Grinding Process of Ti–6Al–4V. Materials 2024, 17, 1729. [Google Scholar] [CrossRef]
- Fan, K.; Jin, Z.; Zhu, X. Investigation on electrochemical grinding (ECG) of pure iron material. Int. J. Adv. Manuf. Technol. 2022, 119, 885–896. [Google Scholar] [CrossRef]
- Ge, Z.; Chen, M.; Wang, R.; Zhang, B.; Zhu, Y. Enhancing honeycomb surface quality by harnessing vortex effect in electrochemical grinding. Compos. Part A Appl. Sci. Manuf. 2025, 190, 108641. [Google Scholar] [CrossRef]
- Wang, J.-H.; Wang, L.; Li, H.-S.; Qu, N.-S. Electrochemical grinding of honeycomb seals using sodium dodecylbenzene sulfonate as an eco-friendly inhibitor: Machining principle and performance evaluation. Adv. Manuf. 2025, 13, 229–244. [Google Scholar] [CrossRef]
- Ge, Z.; Wu, Z.; Zhu, H.; Zhu, Y. Experimental study on electrochemical grinding of superalloy honeycomb material. Mater. Today Commun. 2025, 42, 111479. [Google Scholar] [CrossRef]
- Liu, C.; He, L.; Jia, X.; Zhu, H.; Chen, T.; Wang, W. Effect of Installation Error on Rotary Seal of Aero Engine. Aerospace 2022, 9, 820. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, R.; Sun, D.; Zhou, M.; Li, Y.; Wang, P. Influence Factors of Honeycomb Seal Performance and Stability Analysis of Rotor System. J. Aerosp. Eng. 2022, 35, 04022042. [Google Scholar] [CrossRef]
- Yan, X.; Li, J.; Feng, Z. Effects of Inlet Preswirl and Cell Diameter and Depth on Honeycomb Seal Characteristics. J. Eng. Gas Turbines Power 2010, 132, 122506. [Google Scholar] [CrossRef]
- Qu, N.S.; Zhang, Q.L.; Fang, X.L.; Ye, E.K.; Zhu, D. Experimental Investigation on Electrochemical Grinding of Inconel 718. Procedia CIRP 2015, 35, 16–19. [Google Scholar] [CrossRef]
- Li, H.; Fu, S.; Zhang, Q.; Niu, S.; Qu, N. Simulation and experimental investigation of inner-jet electrochemical grinding of GH4169 alloy. Chin. J. Aeronaut. 2018, 31, 608–616. [Google Scholar] [CrossRef]
- Li, H.; Niu, S.; Zhang, Q.; Fu, S.; Qu, N. Investigation of material removal in inner-jet electrochemical grinding of GH4169 alloy. Sci. Rep. 2017, 7, 3482. [Google Scholar] [CrossRef]
- Sonia, P. Introduction of hybrid machining: Fabrication and experimental investigation of electrochemical grinding on surface roughness. Mater. Today Proc. 2021, 44, 300–304. [Google Scholar] [CrossRef]
- Niu, S.; Yu, C.; Ming, P.; Wang, S.; Qin, G.; Li, X.; Liu, H. Titanium Alloy Ti-6Al-4V Electrochemical Dissolution Behavior in NaNO3 and NaCl Solutions at Low Current Density. Materials 2024, 17, 5026. [Google Scholar] [CrossRef]
- Fan, S.; Hu, X.; Ma, X.; Lu, Y.; Li, H. Removal Mechanism and Electrochemical Milling of (TiB+TiC)/TC4 Composites. Materials 2022, 15, 7046. [Google Scholar] [CrossRef]
Machining Parameters | Value |
---|---|
Electrolyte | 10% (mass fraction) NaCl aq. |
Electrolyte temperature (°C) | 30 ± 0.5 |
Electrolyte pressure (MPa) | 0.3 |
Machining gap (mm) | 0.3 |
Measurement Current Range (A) | 1~40 |
Honeycomb base plate area (cm2) | 1 |
Battery Power (A × min) | Material Removal Quality (g) | Actual Volume Electrolytic Equivalent (cm3/A × min) | |
---|---|---|---|
First Time | Second Time | ||
2 | 0.0216 | 0.0218 | 0.001307 |
4 | 0.0439 | 0.0442 | 0.001327 |
6 | 0.0667 | 0.0670 | 0.001342 |
8 | 0.0904 | 0.0898 | 0.001357 |
10 | 0.1137 | 0.1133 | 0.001367 |
Parameters | Value | ||
---|---|---|---|
Cutting depth (mm) | 0.25 | 0.25 | 0.25 |
Voltage (V) | 12 | 10 | 10 |
Feed speed (mm/min) | 180 | 185 | 190 |
Parameter (V, mm/min) | Before Processing (g) | After Processing (g) | Removal Quality (g) | ECM Removal Quality (g) | Electrolysis Proportion (%) |
---|---|---|---|---|---|
10,190 | 21.047 | 20.441 | 0.606 g | 0.435 | 71.8 |
10,185 | 20.451 | 19.728 | 0.723 g | 0.532 | 73.6 |
12,180 | 23.016 | 21.739 | 1.277 | 1.040 | 81.4 |
Parameters (V, mm/min) | Original Thickness (mm) | Thickness After Processing (mm) | Average Cutting Depth (mm) | ||||
---|---|---|---|---|---|---|---|
10,190 | 3.915 | 3.824 | 3.781 | 3.653 | 3.559 | 3.518 | 0.0133 |
10,185 | 4.102 | 4.041 | 3.983 | 3.836 | 3.771 | 3.717 | 0.0173 |
12,180 | 3.754 | 3.692 | 3.541 | 3.473 | 3.403 | 3.259 | 0.0340 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, P.; Hu, X.; Xu, C.; Wang, L.; Wang, J.; Li, H. Coupling Model of Electrolytic Proportion and Overcutting Depth in the Construction of Electrolytic Grinding Honeycomb Sealing Faces. Materials 2025, 18, 4783. https://doi.org/10.3390/ma18204783
Sun P, Hu X, Xu C, Wang L, Wang J, Li H. Coupling Model of Electrolytic Proportion and Overcutting Depth in the Construction of Electrolytic Grinding Honeycomb Sealing Faces. Materials. 2025; 18(20):4783. https://doi.org/10.3390/ma18204783
Chicago/Turabian StyleSun, Peng, Xiaoyun Hu, Chenyan Xu, Lu Wang, Jinhao Wang, and Hansong Li. 2025. "Coupling Model of Electrolytic Proportion and Overcutting Depth in the Construction of Electrolytic Grinding Honeycomb Sealing Faces" Materials 18, no. 20: 4783. https://doi.org/10.3390/ma18204783
APA StyleSun, P., Hu, X., Xu, C., Wang, L., Wang, J., & Li, H. (2025). Coupling Model of Electrolytic Proportion and Overcutting Depth in the Construction of Electrolytic Grinding Honeycomb Sealing Faces. Materials, 18(20), 4783. https://doi.org/10.3390/ma18204783