Novel Al-Ce-C-O-Mg Grain Refiners with Superior Efficiency and Mechanical Properties Enhancement for AZ91 Alloys
Abstract
1. Introduction
2. Experimental Procedure
3. Results and Discussion
3.1. Microstructure Evolution of the Al-Ce-C-O-Mg Master Alloy
3.2. Al-Ce-C-O-Mg System Reaction Mechanism
3.3. Grain Refinement by Al-Ce-O-C-Mg Grain Refiner on AZ91 Alloy
3.4. Effect of Al-Ce-O-C-Mg Grain Refiner on the Mechanical Properties of AZ91 Alloy
4. Conclusions
- (1)
- The Al-Ce-C-O-Mg grain refiner prepared by the rolling-assisted process contains two types of effective refining particles—MgAl2O4 and Al4C3. These particles are the key to grain refinement for AZ91 alloy.
- (2)
- Incorporating the Al-Ce-C-O-Mg grain refiner into the AZ91 alloy matrix markedly enhanced grain refinement efficacy. An additional level of 1.5 wt.% was the most effective, producing an approximately 72% reduction in the average grain size relative to the unmodified alloy. This microstructural refinement was accompanied by substantial improvements in tensile performance: the UTS increased from 158 MPa to 203 MPa, YS rose from 104 MPa to 121 MPa, and EL improved from 3.9% to 6.3%.
- (3)
- The MgAl2O4 and Al4C3 particles present in the grain refiner possess favorable lattice matching with the α-Mg matrix. In particular, Al4C3 displays a crystallographic orientation relationship with Mg, indicating a well-bonded interface. MgAl2O4 and Al4C3 particles can act as potent heterogeneous nucleation sites for α-Mg during solidification, facilitating efficient nucleation and contributing to substantial grain refinement.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, B.; Yang, J.; Zhang, X.; Yang, Q.; Zhang, J.; Li, X. Development and application of magnesium alloy parts for automotive OEMs: A review. J. Magnes. Alloy. 2023, 11, 15–47. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, J. Advanced lightweight materials for Automobiles: A review. Mater. Des. 2022, 221, 110994. [Google Scholar] [CrossRef]
- Arslan, K. A Review on Developments in Magnesium Alloys. Front. Mater. 2020, 7, 1–26. [Google Scholar]
- Karakulak, E. A review: Past, present and future of grain refining of magnesium castings. J. Magnes. Alloy. 2019, 7, 355–369. [Google Scholar] [CrossRef]
- Dong, B.-X.; Li, Q.; Wang, Z.-F.; Liu, T.-S.; Yang, H.-Y.; Shu, S.-L.; Chen, L.-Y.; Qiu, F.; Jiang, Q.-C.; Zhang, L.-C. Enhancing strength-ductility synergy and mechanisms of Al-based composites by size-tunable in-situ TiB2 particles with specific spatial distribution. Compos. Part B Eng. 2021, 217, 108912. [Google Scholar] [CrossRef]
- Li, H.; Wang, K.; Xu, G.; Jiang, H.; Wang, Q.; Ding, W. Nanoparticle-induced growth behavior of primary α-Mg in AZ91 alloys. Mater. Des. 2020, 196, 109146. [Google Scholar] [CrossRef]
- Ali, Y.; Qiu, D.; Jiang, B.; Pan, F.; Zhang, M.-X. Current research progress in grain refinement of cast magnesium alloys: A review article. J. Alloy. Compd. 2015, 619, 639–651. [Google Scholar] [CrossRef]
- Li, C.; Yang, S.; Du, J.; Liao, H.; Luo, G. Synergistic refining mechanism of Mg-3%Al alloy refining by carbon inoculation combining with Ca addition. J. Magnes. Alloy. 2020, 8, 1090–1101. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Z.; Le, Q.; Bao, L. The effects of ZnO particles on the grain refinement and mechanical properties of AZ31 magnesium alloys. Trans. Indian Inst. Met. 2016, 69, 1911–1918. [Google Scholar] [CrossRef]
- Koltygin, A.; Bazhenov, V.; Mahmadiyorov, U. Influence of Al–5Ti–1B master alloy addition on the grain size of AZ91 alloy. J. Magnes. Alloy. 2017, 5, 313–319. [Google Scholar] [CrossRef]
- Fan, W.; Bai, Y.; Zuo, G.; Hao, H. The control of NbB2 particles in Al-NbB2 master alloy and its effect on grain refinement of AZ91 magnesium alloy. Mater. Sci. Eng. A 2022, 854. [Google Scholar] [CrossRef]
- Liu, X.; Hao, H. The influence of carbon content on Al–Ti–C master alloy prepared by the self-propagating high-temperature synthesis in melt method and its refining effect on AZ31 alloy. J. Alloy. Compd. 2015, 623, 266–273. [Google Scholar] [CrossRef]
- Han, M.; Zhu, X.; Gao, T.; Liu, X. Revealing the roles of Al4C3 and Al8Mn5 during α-Mg nucleation in Mg-Al based alloys. J. Alloy. Compd. 2017, 705, 14–21. [Google Scholar] [CrossRef]
- Peng, L.; Zeng, G.; Lin, C.; Gourlay, C. Al2MgC2 and AlFe3C formation in AZ91 Mg alloy melted in Fe-C crucibles. J. Alloy. Compd. 2020, 854, 156415. [Google Scholar] [CrossRef]
- Zhao, J.; You, C.; Chen, M.; Lyu, S.; Tie, D.; Liu, H. Effect of calcium oxide particle size on microstructure and properties of AZ91 Mg alloy. J. Alloy. Compd. 2021, 886, 160970. [Google Scholar] [CrossRef]
- Ma, Z.; Li, C.; Du, J.; Zhan, M. Grain Refinement of Mg–Al Alloys Inoculated by MgO Powder. Int. J. Met. 2019, 13, 674–685. [Google Scholar] [CrossRef]
- Fan, W.; Bai, Y.; Zuo, G.; Sima, Y.; Hao, H. Preparation of Al-CeO2-Mg grain refiner for AZ31 Mg alloy via a novel direct melt reaction process. Mater. Lett. 2022, 325, 132881. [Google Scholar] [CrossRef]
- Liao, H.; Zhan, M.; Li, C.; Ma, Z.; Du, J. Grain refinement of Mg-Al alloys inoculated by MgAl2O4 powder. J. Magnes. Alloy. 2020, 9, 1211–1219. [Google Scholar] [CrossRef]
- GB/T 228-2002; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. Standards Press of China: Beijing, China, 2002.
- Jia, L.; Rong, X.; Zhao, D.; Zhang, X.; He, C.; Zhao, N. Microstructural characteristic and mechanical properties of the in-situ MgAl2O4 reinforced Al matrix composite based on Al-Mg-ZnO system. J. Alloy. Compd. 2022, 891, 161991. [Google Scholar] [CrossRef]
- Sreekumar, V.M.; Babu, N.H.; Eskin, D.G. Potential of an Al-Ti-MgAl2O4 master alloy and ultrasonic cavitation in the grain re-finement of a cast aluminum alloy. Metall. Mater. Trans. B 2017, 48, 208–219. [Google Scholar] [CrossRef]
- Fan, W.-X.; Bai, Y.; Hao, H.; Zhang, B.; Zhang, X.-G.; Jiang, K.-X. Al-CeO2-Mg refiner on grain refinement, cast fluidity and mechanical properties of AZ91 alloy. China Foundry 2024, 6, 405–413. [Google Scholar] [CrossRef]
- Fan, W.; Bai, Y.; Li, T.; Hao, H.; Zhang, X. Effect of hard-plate rolling and annealing treatment on the microstructure and mechanical properties of NbB2 particle-reinforced AZ91 composite. J. Magnes. Alloy. 2024, 13, 2307–2324. [Google Scholar] [CrossRef]
- Zhang, A.-M.; Hao, H.; Zhang, X.-G. Grain refinement mechanism of Al-5C master alloy in AZ31 magnesium alloy. Trans. Nonferr. Met. Soc. China 2013, 23, 3167–3172. [Google Scholar] [CrossRef]
- Yu, H.; Xin, Y.; Wang, M.; Liu, Q. Hall-Petch relationship in Mg alloys: A review. J. Mater. Sci. Technol. 2018, 34, 248–256. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhang, X.; Fan, W. Novel Al-Ce-C-O-Mg Grain Refiners with Superior Efficiency and Mechanical Properties Enhancement for AZ91 Alloys. Materials 2025, 18, 4782. https://doi.org/10.3390/ma18204782
Li J, Zhang X, Fan W. Novel Al-Ce-C-O-Mg Grain Refiners with Superior Efficiency and Mechanical Properties Enhancement for AZ91 Alloys. Materials. 2025; 18(20):4782. https://doi.org/10.3390/ma18204782
Chicago/Turabian StyleLi, Juan, Xinfang Zhang, and Wenxue Fan. 2025. "Novel Al-Ce-C-O-Mg Grain Refiners with Superior Efficiency and Mechanical Properties Enhancement for AZ91 Alloys" Materials 18, no. 20: 4782. https://doi.org/10.3390/ma18204782
APA StyleLi, J., Zhang, X., & Fan, W. (2025). Novel Al-Ce-C-O-Mg Grain Refiners with Superior Efficiency and Mechanical Properties Enhancement for AZ91 Alloys. Materials, 18(20), 4782. https://doi.org/10.3390/ma18204782