Low-Temperature Performance Enhancement of Warm Mix Asphalt Binders Using SBS and Sasobit: Towards Durable and Green Pavements
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Asphalt
2.1.2. Additives
2.1.3. Preparation Process of the Sasobit–SBS-Modified Asphalt
- A: Unmodified asphalt + 4% SBS modifier + 1.5% sulfur;
- B: Unmodified asphalt + 2.5% SBS Modifier + 1% Sasobit + 0.8% Aromatic oil + 1.5% sulfur;
- C: Unmodified asphalt + 2.5% SBS Modifier + 1% Sasobit + 18% 50-mesh rubber powder + 1.5% sulfur;
- D: Unmodified asphalt + 3.5% SBS + 2% Sasobit + 1.5% sulfur.
2.1.4. Mixture Gradation Design
2.2. Methods
2.2.1. DSR Test
2.2.2. MSCR Test
2.2.3. BBR Test
2.2.4. GPC Test
2.2.5. High-Temperature Rutting Test
2.2.6. Low-Temperature SCB Test
2.2.7. Freeze–Thaw Splitting Test
2.2.8. Indirect Tensile Fatigue Test
3. Results
3.1. Comparison of Composite-Modified Asphalt Performance
3.1.1. Rheological Properties of Modified Asphalt
3.1.2. Creep and Recovery Properties of Modified Asphalt
3.1.3. Low-Temperature Properties of Modified Asphalt
3.1.4. Aging Resistance of Modified Asphalt
3.2. Comparison of Composite-Modified Asphalt Mixture Performance
3.2.1. High-Temperature Performance
3.2.2. Low-Temperature Performance
3.2.3. Moisture Resistance
3.2.4. Fatigue Performance
3.3. Economic Cost Analysis
3.4. Discussion
4. Conclusions
- Under the tested formulations and conditions, composite modification with aromatic oil or crumb rubber was found to mitigate the inherent low-temperature deficiencies of Sasobit while maintaining its advantageous high-temperature performance. These modifications improved the balance between thermal susceptibility and aging resistance, thereby enhancing the durability of asphalt binders. Among the additives examined, crumb rubber showed the most pronounced improvement, suggesting its potential effectiveness for optimizing Sasobit-based formulations.
- The incorporation of Sasobit and various additives into asphalt mixtures significantly improved high-temperature stability, with rutting resistance increasing by 11% to 40%. Although moisture damage resistance experienced a slight reduction, all formulations remained compliant with specification requirements. Among them, the rubber powder formulation (2.5% SBS modifier + 1% Sasobit + 18% 50-mesh crumb rubber) demonstrated the best overall performance, delivering a 24% enhancement in low-temperature crack resistance and a 50% increase in fatigue life, and is thus recommended as the optimal formulation in this study.
- The incorporation of crumb rubber under the studied conditions not only enhanced the low-temperature performance of composite-modified asphalt but also effectively reduced the required SBS dosage, resulting in an estimated 11% reduction in production costs compared with conventional SBS-modified asphalt. While these results are promising for balancing cost and performance, further validation under broader material sources and field conditions is necessary before generalization to large-scale engineering practice.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Xing, C.; Zhu, B.; Zhang, X.; Gao, Y.; Tang, S.; Cheng, H. Comparative analysis of four styrene-butadiene-styrene (SBS) structure repair agents in the rejuvenation of aged SBS-modified bitumen. Constr. Build. Mater. 2025, 476, 141232. [Google Scholar] [CrossRef]
- Xing, C.; Tang, S.; Chang, Z.; Han, Z.; Li, H.; Zhu, B. A comprehensive review on the plant-mixed cold recycling technology of emulsified asphalt: Raw materials and factors affecting performances. Constr. Build. Mater. 2024, 439, 137344. [Google Scholar] [CrossRef]
- Li, M.; Yuan, J.; Jin, T.; Wang, W.; Sun, Y.; Cheng, H. Investigation of performance evolution in recycled asphalt mixtures: The impact of virgin and RAP binder blending. Constr. Build. Mater. 2025, 469, 140519. [Google Scholar] [CrossRef]
- Li, M.; Han, Z.; Cheng, H.; Yang, R.; Yuan, J.; Jin, T. Low-temperature performance improvement strategies for high RAP content recycled asphalt mixtures: Focus on RAP gradation variability and mixing process. Fuel 2025, 387, 134362. [Google Scholar] [CrossRef]
- Xing, C.; Chang, Z.; Jiang, W.; Han, Z.; Li, M. Hot central-plant recycling technology: A systematic review on raw materials and performance-influencing factors. J. Traffic Transp. Eng. Engl. Ed. 2025, 12, 1040–1063. [Google Scholar] [CrossRef]
- Huang, W.; Hu, J.; Luo, S. The technological innovation pathway for green, low-carbon, and durable pavement construction and maintenance. Sci. China Technol. Sci. 2024, 67, 3959–3961. [Google Scholar] [CrossRef]
- Apostolidis, P.; Liu, X.; Erkens, S.; Scarpas, T. Oxidative aging of epoxy asphalt. Int. J. Pavement Eng. 2022, 23, 1471–1481. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, W.; Xu, G.; Gan, L.; Shen, Z.; Luo, S.; Zhang, H.; Feng, Y.; Xiong, H.; Shu, Y. Experimental investigation on the performance of hydraulic asphalt concrete with varying epoxy system content. Constr. Build. Mater. 2025, 484, 141755. [Google Scholar] [CrossRef]
- Islam, M.R.; Salomon, D.; Wasiuddin, N.M. Investigation of oxidative aging of field-extracted asphalt binders at various conditions using carbonyl index. Constr. Build. Mater. 2024, 415, 134969. [Google Scholar] [CrossRef]
- Xu, X.; Sreeram, A.; Leng, Z.; Yu, J.; Li, R.; Peng, C. Challenges and opportunities in the high-quality rejuvenation of unmodified and SBS modified asphalt mixtures: State of the art. J. Clean. Prod. 2022, 378, 134634. [Google Scholar] [CrossRef]
- Zhou, L.; Huang, W.; Sun, L.; Lv, Q.; Lin, P.; Zhang, X.; Liu, L. Analysis of quantification and mechanism of SBS modifier in SBS-modified asphalt. J. Mater. Civ. Eng. 2021, 33, 04021158. [Google Scholar] [CrossRef]
- Xu, G.; Yao, Y.; Wu, M.; Zhao, Y. Molecular simulation and experimental analysis on co-aging behaviors of SBS modifier and asphalt in SBS-modified asphalt. Mol. Simul. 2023, 49, 629–642. [Google Scholar] [CrossRef]
- Kheradmand, B.; Muniandy, R.; Hua, L.T.; Yunus, R.B.; Solouki, A. An overview of the emerging warm mix asphalt technology. Int. J. Pavement Eng. 2014, 15, 79–94. [Google Scholar] [CrossRef]
- Guo, N.; You, Z.; Zhao, Y.; Tan, Y.; Diab, A. Laboratory performance of warm mix asphalt containing recycled asphalt mixtures. Constr. Build. Mater. 2014, 64, 141–149. [Google Scholar] [CrossRef]
- Thives, L.P.; Ghisi, E. Asphalt mixtures emission and energy consumption: A review. Renew. Sustain. Energy Rev. 2017, 72, 473–484. [Google Scholar] [CrossRef]
- Li, J.; Qin, Y.; Zhang, X.; Shan, B.; Liu, C. Emission characteristics, environmental impacts, and health risks of volatile organic compounds from asphalt materials: A state-of-the-art review. Energy Fuels 2024, 38, 4787–4802. [Google Scholar] [CrossRef]
- Abdullah, M.E.; Hainin, M.R.; Yusoff, N.I.M.; Zamhari, K.A.; Hassan, N. Laboratory evaluation on the characteristics and pollutant emissions of nanoclay and chemical warm mix asphalt modified binders. Constr. Build. Mater. 2016, 113, 488–497. [Google Scholar] [CrossRef]
- Liu, N.; Liu, L.; Li, M.; Sun, L. A comprehensive review of warm-mix asphalt mixtures: Mix design, construction temperatures determination, performance and life-cycle assessment. Road Mater. Pavement Des. 2024, 25, 1381–1425. [Google Scholar] [CrossRef]
- Sha, F.; Yang, N.; Duan, X.; Qiao, A.; Chen, H.; Ding, Y. Effects of different warm mixing agents on properties of asphalt and warm mixing asphalt mixture. Case Stud. Constr. Mater. 2025, 22, e04445. [Google Scholar] [CrossRef]
- Yousefi, A.A.; Underwood, B.S.; Ghodrati, A.; Behnood, A.; Vahidi, E.; Nowrouzi, A.; Nowrouzi, A.; Ayar, P.; Haghshenas, H.F. Towards a durable and sustainable warm mix asphalt: Techno-economic and environmental evaluation considering balanced mix design approach. J. Clean. Prod. 2025, 486, 144311. [Google Scholar] [CrossRef]
- Sun, G.; Ning, W.; Jiang, X.; Qiu, K.; Cao, Z.; Ding, Y. A comprehensive review on asphalt fume suppression and energy saving technologies in asphalt pavement industry. Sci. Total Environ. 2024, 913, 169726. [Google Scholar] [CrossRef]
- Al-Taher, M.G.; Sawan, A.M.; Attia, M.I.E.S.; Ibrahim, M.F. Investigating the moisture susceptibility of warm asphalt mixtures modified by sasobit redux (SR). Innov. Infrastruct. Solut. 2024, 9, 133. [Google Scholar] [CrossRef]
- Zhao, K.; Li, Y.; He, F.; Meng, Y.; Hu, C.; Ye, X.; Lin, P. A comprehensive study on the influence of Sasobit content on rheological properties and storage stability of CR/SBS composite-modified asphalt. Constr. Build. Mater. 2025, 463, 140066. [Google Scholar] [CrossRef]
- Hamzah, M.O.; Jamshidi, A.; Shahadan, Z. Evaluation of the potential of Sasobit® to reduce required heat energy and CO2 emission in the asphalt industry. J. Clean. Prod. 2010, 18, 1859–1865. [Google Scholar] [CrossRef]
- Sukkari, A.; Al-Khateeb, G.; Wajeeh, M.; Ezzat, H.; Zeiada, W. Impact of Sasobit on Asphalt Binder’s Performance under UAE Local Conditions. Steps Civil. Constr. Environ. Eng. 2024, 2, 1–8. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, M.; Jiang, Q.; Zhang, J.; Fan, Y.; He, J. Investigation on anti-fuel erosion performance of Sasobit/SBS-modified asphalt and its mixtures. Materials 2024, 17, 3016. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, H.H.; Al-Ameri, M.A. Evaluation of the performance of warm asphalt mixture with Sasobit. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2024; Volume 1374, p. 012090. [Google Scholar]
- Zhao, S.; You, Q.; Jian, C.; Sesay, T.; Qiao, H.; Tian, S. Improving storage stability and rheological performance of asphalt rubber modified with nanosilica and Sasobit. Road Mater. Pavement Des. 2025, 26, 928–952. [Google Scholar] [CrossRef]
- Liu, J.; Li, P. Low temperature performance of sasobit-modified warm-mix asphalt. J. Mater. Civ. Eng. 2012, 24, 57–63. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, X.; Peng, Y.; Cheng, Y.; Zhou, P. Improving effects of warm-mix additive Sasobit on performance of short-term aged SBR modified asphalt. Int. J. Pavement Res. Technol. 2023, 16, 983–991. [Google Scholar] [CrossRef]
- Duan, K.; Wang, C.; Liu, J.; Song, L.; Chen, Q.; Chen, Y. Research progress and performance evaluation of crumb-rubber-modified asphalts and their mixtures. Constr. Build. Mater. 2022, 361, 129687. [Google Scholar] [CrossRef]
- Jin, T.; Feng, Y.; Li, M.; Liu, L.; Yuan, J.; Sun, L. Laboratory short-term aging of crumb rubber modified asphalt: RTFOT temperature optimization and performance investigation. J. Clean. Prod. 2024, 434, 140327. [Google Scholar] [CrossRef]
- ASTM D6648-08; Standard Test Method for Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR). ASTM International: West Conshohocken, PA, USA, 2008.
- Daly, W.H.; Negulescu, I.; Balamurugan, S.S. Implementation of GPC Characterization of Asphalt Binders at Louisiana Materials Laboratory; No. FHWA/LA. 13/505; Louisiana Department of Transportation and Development: Baton Rouge, LA, USA, 2013. [Google Scholar]
- Li, M.; Liu, L.; Huang, W.; Wang, H. Study on the mixing process improvement for hot recycled asphalt mixture. Constr. Build. Mater. 2023, 365, 130068. [Google Scholar] [CrossRef]
- Huang, W.; Li, Y.; Meng, Y.; He, C.; Ye, X.; Chen, X.; Hu, C. Comprehensive study on the performance of SBS and crumb rubber composite modified asphalt based on the rubber pretreatment technology. Case Stud. Constr. Mater. 2024, 20, e03141. [Google Scholar] [CrossRef]
- Qian, C.; Fan, W. Evaluation and characterization of properties of crumb rubber/SBS modified asphalt. Mater. Chem. Phys. 2020, 253, 123319. [Google Scholar] [CrossRef]
Properties | Penetration /0.1 mm | 15 °C Ductility /cm | Softening Point /°C | Mass Loss After RTFOT /% | 15 °C Ductility After RTFOT /cm |
---|---|---|---|---|---|
Result | 66.4 | >100 | 49.8 | 0.03 | 24.3 |
AC-13 | Cumulative Percent Passing of Each Sieve/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
16 | 13.2 | 9.5 | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 | |
Upper limit | 100 | 100 | 85 | 68 | 50 | 38 | 28 | 20 | 15 | 8 |
Designed gradation | 100 | 94 | 84 | 60.2 | 48.7 | 25.2 | 18.4 | 10.2 | 7.5 | 4.4 |
Lower limit | 100 | 90 | 68 | 38 | 24 | 15 | 10 | 7 | 5 | 4 |
Raw Materials | Asphalt | SBS | Sulfur |
---|---|---|---|
Unit price (CNY/t) | 4400 | 15,000 | 2350 |
Dosage (kg) | 945 | 40 | 15 |
Total price (CNY/t) | 4793.25 |
Raw Materials | Asphalt | SBS | Sasobit | Aromatic Oil | Sulfur |
---|---|---|---|---|---|
Unit price (CNY/t) | 4400 | 15,000 | 35,000 | 4000 | 2350 |
Dosage (kg) | 942 | 25 | 10 | 8 | 15 |
Total price (CNY/t) | 4937.05 |
Raw Materials | Asphalt | SBS | Sasobit | Crumb Rubber | Sulfur |
---|---|---|---|---|---|
Unit price (CNY/t) | 4400 | 15,000 | 35,000 | 1000 | 2350 |
Dosage (kg) | 780 | 25 | 10 | 180 | 15 |
Total price (CNY/t) | 4372.25 |
Raw Materials | Asphalt | SBS | Sasobit | Sulfur |
---|---|---|---|---|
Unit price (CNY/t) | 4400 | 15,000 | 35,000 | 2350 |
Dosage (kg) | 930 | 35 | 20 | 15 |
Total price (CNY/t) | 5352.25 |
Performance | A | B | C | D |
---|---|---|---|---|
Dynamic stability (cycle/min) | 5526 | 6176 | 7732 | 7262 |
Fracture energy (J/m2) | 923 | 917 | 1144 | 960 |
TSR (%) | 90.7 | 85.6 | 86.2 | 82.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, X.; Li, M.; Meng, Y.; Sheng, J.; Zhang, Y.; Liu, L. Low-Temperature Performance Enhancement of Warm Mix Asphalt Binders Using SBS and Sasobit: Towards Durable and Green Pavements. Materials 2025, 18, 4756. https://doi.org/10.3390/ma18204756
Feng X, Li M, Meng Y, Sheng J, Zhang Y, Liu L. Low-Temperature Performance Enhancement of Warm Mix Asphalt Binders Using SBS and Sasobit: Towards Durable and Green Pavements. Materials. 2025; 18(20):4756. https://doi.org/10.3390/ma18204756
Chicago/Turabian StyleFeng, Xuemao, Mingchen Li, Yifu Meng, Jianwei Sheng, Yining Zhang, and Liping Liu. 2025. "Low-Temperature Performance Enhancement of Warm Mix Asphalt Binders Using SBS and Sasobit: Towards Durable and Green Pavements" Materials 18, no. 20: 4756. https://doi.org/10.3390/ma18204756
APA StyleFeng, X., Li, M., Meng, Y., Sheng, J., Zhang, Y., & Liu, L. (2025). Low-Temperature Performance Enhancement of Warm Mix Asphalt Binders Using SBS and Sasobit: Towards Durable and Green Pavements. Materials, 18(20), 4756. https://doi.org/10.3390/ma18204756