Effect of Carbon-Based Modifications of Polydicyclopentadiene Resin on Tribological and Mechanical Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Composite
2.3. Methods
2.3.1. Mechanical Properties
2.3.2. Tribological Properties
3. Results and Discussion
3.1. Mechanical Properties
Samples | Compressive Strength [MPa] | Standard Deviation | Strain [%] | Tensile Strength [MPa] | Standard Deviation | Strain [%] |
---|---|---|---|---|---|---|
PDCPD | 78.0 | 0.3 | 14.0 | 45.9 | 0.2 | 0.8 |
PDCPD + 5% Dusty Graphite | 52.9 | 0.2 | 11.4 | 49.2 | 0.5 | 4.1 |
PDCPD + 10% Dusty Graphite | 63.9 | 0.8 | 15.0 | 45.8 | 1.0 | 3.2 |
PDCPD + 5% Flake Graphite | 47.9 | 0.6 | 11.9 | 47.4 | 0.7 | 2.5 |
PDCPD + 10% Flake Graphite | 67.9 | 0.8 | 14.1 | 48.9 | 1.0 | 2.9 |
PDCPD + 0.3% Carbon Nanotubes | 30.4 | 0.7 | 10.6 | 38.3 | 0.06 | 0.7 |
PDCPD + 0.5% Carbon Nanotubes | 26.8 | 0.3 | 9.3 | 23.5 | 0.4 | 0.6 |
PDCPD + 5% Carbon Fibers | 93.2 | 0.3 | 14.0 | 44.2 | 0.8 | 0.7 |
PDCPD + 10% Carbon Fibers | 70.2 | 0.7 | 12.1 | 49.7 | 0.8 | 0.5 |
3.2. Tribological Properties
Samples | Coefficient of Friction (a.u.) | Standard Deviation | Mass Loss [g] |
---|---|---|---|
PDCPD | 0.77 | 0.00890 | 0.0005 |
PDCPD + 5% Dusty Graphite | 0.26 | 0.01048 | 0.0001 |
PDCPD + 10% Dusty Graphite | 0.25 | 0.00528 | 0.0001 |
PDCPD + 5% Flake Graphite | 0.32 | 0.00721 | 0.0001 |
PDCPD + 10% Flake Graphite | 0.24 | 0.00724 | 0.0002 |
PDCPD + 0.3% Carbon Nanotubes | 0.74 | 0.00677 | 0.0010 |
PDCPD + 0.5% Carbon Nanotubes | 0.71 | 0.01161 | 0.0009 |
PDCPD + 5% Carbon Fibers | 0.70 | 0. 00492 | 0.0007 |
PDCPD + 10% Carbon Fibers | 0.66 | 0. 01142 | 0.0006 |
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kawakame, M.; Bressan, J.D. Study of wear in self-lubricating composites for application in seals of electric motors. J. Mater. Process. Technol. 2006, 179, 74–80. [Google Scholar] [CrossRef]
- Revill, P.; Clarke, A.; Pullin, R.; Dennis, G. Acoustic emission monitoring of wear in aerospace self-lubricating bearing liner materials. Wear 2021, 486, 204102. [Google Scholar] [CrossRef]
- Olivera, A.F.; Chica, E.; Colorado, H.A. Evaluation of Recyclable Thermoplastics for the Manufacturing of Wind Turbines Blades H-Darrieus. In Characterization of Minerals, Metals, and Materials 2022; Springer: New York, NY, USA, 2022; pp. 341–348. [Google Scholar]
- Rodiouchkina, M.; Berglund, K.; Mouzon, J.; Forsberg, F.; Ullah Shah, F.; Rodushkin, I.; Larsson, R. Material characterization and influence of sliding speed and pressure on friction and wear behavior of self-lubricating bearing materials for hydropower applications. Lubricants 2018, 6, 39. [Google Scholar] [CrossRef]
- Trachsel, M.; Pittini, R.; Dual, J. Evaluation and quantification of friction using ionic liquids in small, self lubricating journal bearings. Tribol. Int. 2018, 122, 15–22. [Google Scholar] [CrossRef]
- Holmberg, K.; Erdemir, A. Influence of tribology on global energy consumption, costs and emissions. Friction 2017, 5, 263–284. [Google Scholar] [CrossRef]
- Zhao, J.; Huang, Y.; He, Y.; Shi, Y. Nanolubricant additives: A review. Friction 2021, 9, 891–917. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Y.; He, Y.; Luo, J. In Situ Green Synthesis of the New Sandwichlike Nanostructure of Mn3O4/Graphene as Lubricant Additives. Acs Appl. Mater. Int. 2019, 11, 36931–36938. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, G.; Zhao, W.; Yan, X.; Zhang, Y. An Experimental Test on a Cryogenic High-Speed Hydrodynamic Non-Contact Mechanical Seal. Tribol. Lett. 2017, 65, 65–80. [Google Scholar] [CrossRef]
- Ouyang, J.-H.; Li, Y.-F.; Zhang, Y.-Z.; Wang, Y.-M.; Wang, Y.-J. High-Temperature Solid Lubricants and Self-Lubricating Composites. Lubricants 2022, 10, 177. [Google Scholar] [CrossRef]
- Nturanabo, F.; Masu, L.M.; Govender, G. Automotive light-weighting using aluminium metal matrix composites. In Materials Science Forum; Trans Tech Publications Ltd.: Zurich, Switzerland, 2015; Volume 828, pp. 485–491. [Google Scholar]
- Nanda, R.P.; Agarwal, P.; Shrikhande, M. Suitable friction sliding materials for base isolation of masonry buildings. Shock. Vib. 2012, 19, 1327–1339. [Google Scholar] [CrossRef]
- Hsissou, R.; Seghiri, R.; Benzekri, Z.; Hilali, M.; Rafik, M.; Elharfi, A. Polymer composite materials: A comprehensive review. Compos. Struct. 2021, 262, 113640. [Google Scholar] [CrossRef]
- Ujah, C.O.; Von Kallon, D.V.; Aigbodion, V.S. Tribological Properties of CNTs-Reinforced Nano Composite Materials. Lubricants 2023, 11, 95. [Google Scholar] [CrossRef]
- Blanchet, T.A. Wear of polytetrafluoroethylene and PTFE composites. Polym. Tribol. 2009, 347–374. [Google Scholar] [CrossRef]
- Mu, L.; Zhu, J.; Fan, J.; Zhou, Z.; Shi, Y.; Feng, X.; Wang, H.; Lu, X. Self-Lubricating Polytetrafluoroethylene/Polyimide Blends Reinforced with Zinc Oxide Nanoparticles. J. Nanomater. 2015, 545307. [Google Scholar] [CrossRef]
- Yang, C.; Xie, G.; Kang, J.; Zhang, L. Research on polyamide based self-lubricating composites: A review. Polym. Compos. 2022, 43, 5767–5782. [Google Scholar] [CrossRef]
- Zhu, J.; Xie, F.; Dwyer-Joyce, R.S. PEEK composites as self-lubricating bush materials for articulating revolute pin joints. Polymers 2020, 12, 665. [Google Scholar] [CrossRef]
- Yang, T.; Liu, H.; Liu, L.; Yan, Y.; Li, J.; Wang, J. Synergistic effects of polytetrafluoroethylene fibers and graphite microplates on the tribological performance of polyetherketone composites for seawater lubrication. Tribol. Int. 2025, 204, 110492. [Google Scholar] [CrossRef]
- Xu, S.; Tangpong, X.W. Tribological behavior of polyethylene-based nanocomposites. J. Mater. Sci. 2013, 48, 578–597. [Google Scholar] [CrossRef]
- Yang, C.; Jiang, P.; Qin, H.; Wang, X.; Wang, Q. 3D printing of porous polyimide for high-performance oil impregnated self-lubricating. Tribol. Int. 2021, 160, 107009. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, G.; Jiang, D.; Yin, Z. Enhancement of Underwater Tribological Properties of Hybrid PTFE/Nomex Fabric/Epoxy Resin Multilayer Composites by Mixed Graphite and MoS2 Fillers. ACS Omega 2022, 7, 27609–27616. [Google Scholar] [CrossRef]
- Cheng, C.; Zhang, C.; Chen, Z.; Zhou, F.; Zhou, J.; Sun, Z.; Yu, M. Polydicyclopentadiene toughened epoxy resin and its carbon fiber composites via sequential polymerization. Polym. Compos. 2023, 44, 6929–6943. [Google Scholar] [CrossRef]
- Wang, L.; Pan, B.; Du, J.; Cheng, Y.; Liu, J.; Du, S.; Shangguan, B.; Zhang, Y. The Tribological and Mechanical Properties of PDCPD/PEW Composites Prepared by Reaction Injection Moulding. Polym. Polym. Compos. 2015, 23, 37–42. [Google Scholar] [CrossRef]
- Peters, S.T. (Ed.) Handbook of Composites; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Hu, N. (Ed.) Composites and Their Applications; InTech Open: London, UK, 2012. [Google Scholar]
- Królikowski, W. Polimerowe Kompozyty Konstrukcyjne; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2012. [Google Scholar]
- Kessler, M.; Larin, G.; Bernklau, N. Cure characterization and viscosity development of ring-opening metathesis polymerized resins. J. Therm. Anal. Calorim. 2006, 85, 7–12. [Google Scholar] [CrossRef]
- Yao, Z.; Zhou, L.-W.; Dai, B.-B.; Cao, K.-J. Ring-opening metathesis copolymerization of dicyclopentadiene and cyclopentene through reaction injection molding process. J. Appl. Polym. Sci. 2012, 125, 2489–2493. [Google Scholar]
- Knorr, D.B., Jr.; Masser, K.A.; Elder, R.M.; Sirk, T.W.; Hindenlang, M.D.; Yu, J.H.; Richardson, A.D.; Boyd, S.E.; Spurgeon, W.A.; Lenhart, J.L. Overcoming the structural versus energy dissipation trade-off in highly crosslinked polymer networks: Ultrahigh strain rate response in polydicyclopentadiene. Compos. Sci. Technol. 2015, 114, 17–25. [Google Scholar] [CrossRef]
- Sheng, X.; Kessler, M.R.; Lee, J.K. The influence of cross-linking agents on ring-opening metathesis polymerized thermosets. J. Therm. Anal. Calorim. 2007, 89, 459–464. [Google Scholar] [CrossRef]
- Cheng, C.; Zhang, C.; Chen, Z.; Zhou, F.; Sun, Z.; Yu, M. Newly designed polydicyclopentadiene and its continuous carbon fiber composites: Preparation and mechanical properties assessment. Polymer 2022, 262, 125481. [Google Scholar] [CrossRef]
- Kovačič, S.; Slugovc, C. Ring-Opening Metathesis Polymerisation Derived Poly(Dicyclopentadiene) Based Materials. Mater. Chem. Front. 2020, 4, 2235–2255. [Google Scholar]
- Andjelkovic, D.D.; Larock, R.C. Novel Rubbers from Cationic Copolymerization of Soybean Oils and Dicyclopentadiene. 1. Synthesis and Characterization. Biomacromolecules 2006, 7, 927–936. [Google Scholar] [CrossRef]
- Chiu, H.T.; Chen, S.C. Curing Reaction of Unsaturated Polyester Resin Modified by dicyclopentadiene. J. Polym. Res. 2001, 8, 183–190. [Google Scholar] [CrossRef]
- Kong, W.S.; Ju, T.J.; Park, J.H.; Joo, S.R.; Yoon, H.G.; Lee, J.W. Synthesis and Characterization of Hydrogenated Sorbic Acid Grafted Dicyclopentadiene Tackifier. Int. J. Adhes. Adhes. 2012, 38, 38–44. [Google Scholar] [CrossRef]
- Verbruggen, M.A.L.; van der Does, L.; Noordermeer, J.W.M.; van Duin, M. Influence of the Diene Monomer on Devulcanization of EPDM Rubber. J. Appl. Polym. Sci. 2008, 109, 976–986. [Google Scholar] [CrossRef]
- Mol, J.C. Industrial Applications of Olefin Metathesis. J. Mol. Catal. A Chem. 2004, 213, 39–45. [Google Scholar]
- Rule, J.D.; Moore, J.S. ROMP Reactivity of Endo- and Exo-Dicyclopentadiene. Macromolecules 2002, 35, 7878–7882. [Google Scholar] [CrossRef]
- He, Z.-L.; Xu, J.-K.; Zhang, L.; Ren, H.-Y.; Fu, S.-Y. Dramatically Enhanced Tensile Strength and Impact Toughness of Polydicyclopentadiene Composites by Covalent Bond Formation between Phenyl-Functionalized Silica and Dicyclopentadiene. Compos. Part B Eng. 2019, 170, 31–40. [Google Scholar]
- Colorado, H.A.; Yuan, W.; Meza, J.; Jaramillo, F.; Gutierrez-Velasquez, E.I. Gutierrez-Velasquez, Enhancing Thermomechanical Strength and Thermal Stabilityof Poly(dicyclopentadiene) Composites through Cost-Effective Fly Ash Reinforcement for Structural and Impact Applications. Polymers 2023, 15, 4418. [Google Scholar] [CrossRef]
- Xin, W.; Severino, J.; Venkert, A.; Yu, H.; Knorr, D.; Yang, J.-M.; Carlson, L.; Hicks, R.; De Rosa, I. Fabrication and Characterization of Solid Composite Yarns from Carbon Nanotubes and Poly(dicyclopentadiene). Nanomaterials 2020, 10, 717. [Google Scholar] [CrossRef]
- Kuang, J.; Zheng, N.; Liu, C.; Zheng, Y. Manipulating the thermal and dynamic mechanical properties of polydicyclopentadiene via tuning the stiffness of the incorporated monomers. e-Polymers 2019, 19, 355–364. [Google Scholar] [CrossRef]
- Zhao, J.; Mao, J.; Li, Y.; He, Y.; Luo, J. Friction-induced nano-structural evolution of graphene as a lubrication additive. Appl. Surf. Sci. 2018, 434, 21–27. [Google Scholar]
- Leonardi, M.; Alemani, M.; Straffelini, G.; Gialanella, S. A pin-on-disc study on the dry sliding behavior of a Cu-free friction material containing different types of natural graphite. Wear 2020, 203, 442–443. [Google Scholar] [CrossRef]
- Jradi, K.; Schmitt, M.; Bistac, S. Surface modifications induced by the friction of graphites against steel. Appl. Surf. Sci. 2009, 255, 4219–4224. [Google Scholar] [CrossRef]
- Smoleń, J.; Olesik, P.; Stępień, K.; Mikuśkiewicz, M.; Myalska-Głowacka, H.; Kozioł, M.; Gawron, A.; Godzierz, M. The Influence of Graphite Filler on the Self-Lubricating Properties of Epoxy Composites. Materials 2024, 17, 1308. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y.; Liu, D.; Gu, Y.; Zheng, R.; Ma, R.; Li, S.; Wang, Y.; Shi, Y. The Tribological Performance of Metal-/Resin-Impregnated Graphite under Harsh Condition. Lubricants 2022, 10, 2. [Google Scholar] [CrossRef]
- Morstein, C.E.; Dienwiebel, M. Graphite lubrication mechanisms under high mechanical load. Wear 2021, 477, 203794. [Google Scholar] [CrossRef]
- Zhang, C.F.; Pan, B.L.; Liu, J.C.; Zhang, Y.Q.; Zhangł, Y.Z. Tribological Properties of Polydicyclopentadiene Filled with Chemically Treated Expanded Graphite. Appl. Mech. Mater. 2010, 34–35, 1973–1977. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.; Gao, F.; He, X. Improved interfacial adhesion of carbon fiber-reinforced polydicyclopentadiene layered composite material by modification of norbornene derivatives. Polym. Eng. Sci. 2024, 64, 3289–3302. [Google Scholar] [CrossRef]
- Zhu, J.; Ma, L.; Dwyer-Joyce, R. Friction and wear behaviours of self-lubricating peek composites for articulating pin joints. Tribol. Int. 2020, 149, 105741. [Google Scholar] [CrossRef]
- Yoo, H.M.; Kim, M.S.; Kim, B.S.; Kwon, D.J.; Choi, S.W. Impact and shear properties of carbon fabric/poly-dicyclopentadiene composites manufactured by vacuum-assisted resin transfer molding. e-Polymers 2019, 19, 437–443. [Google Scholar] [CrossRef]
- Jeong, W.; Kessler, M.R. Toughness enhancement in ROMP functionalized carbon nanotube/polydicyclopentadiene composites. Chem. Mater. 2008, 20, 7060–7068. [Google Scholar] [CrossRef]
- Hu, F.; Du, J.; Zheng, Y. Morphological effect of fillers on graphite reinforced polydicyclopentadiene based composites. Polym. Compos. 2014, 35, 1918–1925. [Google Scholar] [CrossRef]
- Shang, Y.; Zhao, Y.; Liu, Y.; Zhu, Y.; Jiang, Z.; Zhang, H. The effect of micron-graphite particle size on the mechanical and tribological properties of PEEK Composites. High Perform. Polym. 2017, 30, 153–160. [Google Scholar] [CrossRef]
- Myalski, J.; Godzierz, M.; Olesik, P. Effect of Carbon Fillers on the Wear Resistance of PA6 Thermoplastic Composites. Polymers 2020, 12, 2264. [Google Scholar] [CrossRef] [PubMed]
- Smoleń, J.; Stępień, K.; Mikuśkiewicz, M.; Myalska-Głowacka, H.; Kozioł, M.; Godzierz, M.; Janeczek, H.; Czakiert, J. Tribological Properties of Composites Based on Single-Component Powdered Epoxy Matrix Filled with Graphite. Materials 2024, 17, 3054. [Google Scholar] [CrossRef]
- Cividanes, L.S.; Simonetti, E.A.; Moraes, M.B.; Fernandes, F.W.; Thim, G.P. Influence of Carbon Nanotubes on Epoxy Resin Cure Reaction Using Different Techniques: A Comprehensive Review. Polym. Eng. Sci. 2014, 54, 2461–2469. [Google Scholar] [CrossRef]
- Mohd Nurazzi, N.; Muhammad Asyraf, M.R.; Khalina, A.; Abdullah, N.; Sabaruddin, F.A.; Kamarudin, S.H.; Ahmad, S.; Mahat, A.M.; Lee, C.L.; Aisyah, H.A.; et al. Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite. Polymers 2021, 13, 1047. [Google Scholar] [CrossRef]
- Roy, S.; Petrova, R.S.; Mitra, S. Effect of carbon nanotube (CNT) functionalization in Epoxy-CNT composites. Nanotechnol. Rev. 2018, 7, 475–485. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warycha, J.; Kurowski, J.; Smoleń, J.; Stępień, K. Effect of Carbon-Based Modifications of Polydicyclopentadiene Resin on Tribological and Mechanical Properties. Materials 2025, 18, 4754. https://doi.org/10.3390/ma18204754
Warycha J, Kurowski J, Smoleń J, Stępień K. Effect of Carbon-Based Modifications of Polydicyclopentadiene Resin on Tribological and Mechanical Properties. Materials. 2025; 18(20):4754. https://doi.org/10.3390/ma18204754
Chicago/Turabian StyleWarycha, Joanna, Janusz Kurowski, Jakub Smoleń, and Krzysztof Stępień. 2025. "Effect of Carbon-Based Modifications of Polydicyclopentadiene Resin on Tribological and Mechanical Properties" Materials 18, no. 20: 4754. https://doi.org/10.3390/ma18204754
APA StyleWarycha, J., Kurowski, J., Smoleń, J., & Stępień, K. (2025). Effect of Carbon-Based Modifications of Polydicyclopentadiene Resin on Tribological and Mechanical Properties. Materials, 18(20), 4754. https://doi.org/10.3390/ma18204754