Atomistic Doping Effects on the Ideal Strength of Graphene/Aluminum Interfaces
Abstract
1. Introduction
2. Modeling and Calculation Methods
3. Results and Discussion
3.1. Analysis of Electronic Properties of Interface Structures
3.1.1. Structural Stability
3.1.2. Electronic Performance Analysis
3.2. Mechanical Property Analysis of Interface Structures
3.3. Strengthening Mechanism of the Gr/Al-Mn Interface Structure
3.3.1. Deformation Mechanism
3.3.2. Electronic Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, J. Fabrication characteristics and tribological behavior of Al/SiC/Gr hybrid aluminum matrix composites: A review. Friction 2016, 4, 191–207. [Google Scholar] [CrossRef]
- Chen, M.; Fan, G.; Tan, Z.; Xiong, D.; Guo, Q.; Su, Y.; Zhang, J.; Li, Z.; Naito, M.; Zhang, D. Design of an efficient flake powder metallurgy route to fabricate CNT/6061Al composites. Mater. Design 2018, 142, 288–296. [Google Scholar] [CrossRef]
- Kim, W.J.; Lee, S.H. High-temperature deformation behavior of carbon nanotube (CNT)-reinforced aluminum composites and prediction of their high-temperature strength. Compos. Part A Appl. Sci. Manuf. 2014, 67, 308–315. [Google Scholar] [CrossRef]
- Li, H.; Kang, J.; He, C.; Zhao, N.; Liang, C.; Li, B. Mechanical properties and interfacial analysis of aluminum matrix composites reinforced by carbon nanotubes with diverse structures. Mater. Sci. Eng. A 2013, 577, 120–124. [Google Scholar] [CrossRef]
- Stein, J.; Lenczowski, B.; Fréty, N.; Anglaret, E. Mechanical reinforcement of a high-performance aluminium alloy AA5083 with homogeneously dispersed multi-walled carbon nanotubes. Carbon 2012, 50, 2264–2272. [Google Scholar] [CrossRef]
- Hwang, J.; Yoon, T.; Jin, S.H.; Lee, J.; Kim, T.S.; Hong, S.H.; Jeon, S. Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv. Mater. 2013, 25, 6724–6729. [Google Scholar] [CrossRef]
- Kim, W.J.; Lee, T.J.; Han, S.H. Multi-layer graphene/copper composites: Preparation using high-ratio differential speed rolling, microstructure and mechanical properties. Carbon 2014, 69, 55–65. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Tjong, S.C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater. Sci. Eng. R Rep. 2013, 74, 281–350. [Google Scholar] [CrossRef]
- Nieto, A.; Bisht, A.; Lahiri, D.; Zhang, C.; Agarwal, A. Graphene reinforced metal and ceramic matrix composites: A review. Int. Mater. Rev. 2016, 62, 241–302. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Liu, E.; He, C.; Han, Y.; Li, Q.; Nash, P.; Zhao, N. Fabrication of three-dimensional graphene/Cu composite by in-situ CVD and its strengthening mechanism. J. Alloys Compd. 2016, 688, 69–76. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, C.; Liu, E.; Zhao, N.; He, C. Effect of Interface Structure on the Mechanical Properties of Graphene Nanosheets Reinforced Copper Matrix Composites. ACS Appl. Mater. Interfaces 2018, 10, 37586–37601. [Google Scholar] [CrossRef]
- Liu, J.; Khan, U.; Coleman, J.; Fernandez, B.; Rodriguez, P.; Naher, S.; Brabazon, D. Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: Powder synthesis and prepared composite characteristics. Mater. Des. 2016, 94, 87–94. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, F.; Xu, J.; Nian, Q.; Lin, D.; Chen, C.; Zhu, X.; Chen, Y.; Zhang, M. 3D printing graphene-aluminum nanocomposites. J. Alloys Compd. 2018, 746, 269–276. [Google Scholar] [CrossRef]
- Bartolucci, S.F.; Paras, J.; Rafiee, M.A.; Rafiee, J.; Lee, S.; Kapoor, D.; Koratkar, N. Graphene–aluminum nanocomposites. Mater. Sci. Eng. A 2011, 528, 7933–7937. [Google Scholar] [CrossRef]
- Yan, S.J.; Dai, S.L.; Zhang, X.Y.; Yang, C.; Hong, Q.H.; Chen, J.Z.; Lin, Z.M. Investigating aluminum alloy reinforced by graphene nanoflakes. Mater. Sci. Eng. A 2014, 612, 440–444. [Google Scholar] [CrossRef]
- Rashad, M.; Pan, F.; Yu, Z.; Asif, M.; Lin, H.; Pan, R. Investigation on microstructural, mechanical and electrochemical properties of aluminum composites reinforced with graphene nanoplatelets. Prog. Nat. Sci. Mater. Int. 2015, 25, 460–470. [Google Scholar] [CrossRef]
- Wang, J.; Li, Z.; Fan, G.; Pan, H.; Chen, Z.; Zhang, D. Reinforcement with graphene nanosheets in aluminum matrix composites. Scr. Mater. 2012, 66, 594–597. [Google Scholar] [CrossRef]
- Zhao, L.; Lu, H.; Gao, Z. Microstructure and Mechanical Properties of Al/Graphene Composite Produced by High-Pressure Torsion. Adv. Eng. Mater. 2014, 17, 976–981. [Google Scholar] [CrossRef]
- Palei, B.B.; Dash, T.; Biswal, S.K. Graphene reinforced aluminum nanocomposites: Synthesis, characterization and properties. J. Mater. Sci. 2022, 57, 8544–8556. [Google Scholar] [CrossRef]
- Wang, F.; Liu, H.; Liu, Z.; Guo, Z.; Sun, F. Microstructure analysis, tribological correlation properties and strengthening mechanism of graphene reinforced aluminum matrix composites. Sci. Rep. 2022, 12, 9561. [Google Scholar] [CrossRef]
- Yu, X.; Gong, W.; Wu, H.; Duan, L. Mechanical and Microstructural Analysis of Exfoliated Graphite Nanoplatelets-Reinforced Aluminum Matrix Composites Synthesized via Friction Stir Processing. Arab. J. Sci. Eng. 2022, 48, 3009–3019. [Google Scholar] [CrossRef]
- Chak, V.; Chattopadhyay, H. Synthesis of graphene–aluminium matrix nanocomposites: Mechanical and tribological properties. Mater. Sci. Technol. 2021, 37, 467–477. [Google Scholar] [CrossRef]
- Liu, L.-Y.; Yang, Q.-S.; Liu, X. Microstructure design and mechanical properties of grain-gradient graphene/aluminum composites. Eng. Fract. Mech. 2023, 277, 108944. [Google Scholar] [CrossRef]
- Ju, B.; Yu, Z.; Gou, H.; Yang, W.; Chen, G.; Wu, G. Coordinated matrix deformation induced ductility in multilayer graphene/aluminum composites. Carbon 2023, 202, 31–40. [Google Scholar] [CrossRef]
- Li, M.; Gao, H.; Liang, J.; Gu, S.; You, W.; Shu, D.; Wang, J.; Sun, B. Microstructure evolution and properties of graphene nanoplatelets reinforced aluminum matrix composites. Mater. Charact. 2018, 140, 172–178. [Google Scholar] [CrossRef]
- Shin, S.E.; Bae, D.H. Deformation behavior of aluminum alloy matrix composites reinforced with few-layer graphene. Compos. Part A Appl. Sci. Manuf. 2015, 78, 42–47. [Google Scholar] [CrossRef]
- Huang, J.; Wang, K.; Li, M.; Cheng, Y.; Lai, Z.; Hu, J.; Qu, N.; Liu, Y.; Zhou, F.; Zhu, J. Influence of alloy atoms on the electronic structure and interfacial properties of graphene/aluminum composites: Theoretical calculation and experimental verification. Vacuum 2023, 215, 112253. [Google Scholar] [CrossRef]
- Pu, B.; Mesguich, D.; Estournès, C.; Zhang, X.; Chevallier, G.; Zhao, N.; Laurent, C. Al matrix composites reinforced by in situ synthesized graphene–Cu hybrid layers: Interface control by spark plasma sintering conditions. J. Mater. Sci. 2022, 57, 6266–6281. [Google Scholar] [CrossRef]
- Luo, Y.; Huang, Y.; Liu, J.; Chen, Q. Copper coated graphene reinforced aluminum composites with enhanced mechanical strength and conductivity. Vacuum 2023, 218, 112610. [Google Scholar] [CrossRef]
- Luo, Y.; Huang, Y.; Hassan, A. Fabrication and characterization of nickel-encapsulated graphene-reinforced aluminium composites. Bull. Mater. Sci. 2022, 45, 239. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, B.; Ma, L.; Liu, G.; Qian, S.; Xu, Z.; Liu, E.; Zhang, X.; He, C.; Zhao, N. Architectured interfacial interlocking structure for enhancing mechanical properties of Al matrix composites reinforced with graphene nanosheets. Carbon 2021, 183, 685–701. [Google Scholar] [CrossRef]
- Liu, G.; Zhao, N.; Shi, C.; Liu, E.; He, F.; Ma, L.; Li, Q.; Li, J.; He, C. In-situ synthesis of graphene decorated with nickel nanoparticles for fabricating reinforced 6061Al matrix composites. Mater. Sci. Eng. A 2017, 699, 185–193. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Guan, R.G.; Guan, X.H.; Feng, Z.X.; Chen, H.; Chen, Y. Microstructures and Properties of Graphene-Cu/Al Composite Prepared by a Novel Process Through Clad Forming and Improving Wettability with Copper. Adv. Eng. Mater. 2015, 17, 663–668. [Google Scholar] [CrossRef]
- Liu, P.; Xie, J.; Wang, A.; Ma, D.; Mao, Z. First-principles prediction of enhancing graphene/Al interface bonding strength by graphene doping strategy. Appl. Surf. Sci. 2020, 517, 146040. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Zhou, F.; Chen, M.; Qu, N.; Liao, M.; Zhu, J. The interface properties of defective graphene on aluminium: A first-principles calculation. Comput. Mater. Sci. 2021, 188, 110157. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Jones, R.O.; Gunnarsson, O. The density functional formalism, its applications and prospects. Rev. Mod. Phys. 1989, 61, 689. [Google Scholar] [CrossRef]
- Perdew, J.P.; Wang, Y. Erratum: Accurate and simple analytic representation of the electron-gas correlation energy [Phys. Rev. B 45, 13244 (1992)]. Phys. Rev. B. 2018, 98, 079904. [Google Scholar] [CrossRef]
- Adamska, L.; Lin, Y.; Ross, A.J.; Batzill, M.; Oleynik, I.I. Atomic and electronic structure of simple metal/graphene and complex metal/graphene/metal interfaces. Phys. Rev. B. 2012, 85, 195443. [Google Scholar] [CrossRef]
- Xu, L.; Zheng, H.; Xu, B.; Liu, G.; Zhang, S.; Zeng, H. Suppressing Nonradiative Recombination by Electron-Donating Substituents in 2D Conjugated Triphenylamine Polymers toward Efficient Perovskite Optoelectronics. Nano Lett. 2023, 23, 1954–1960. [Google Scholar] [CrossRef]
- Huang, J.; Li, M.; Liu, Y.; Chen, J.; Lai, Z.; Hu, J.; Zhou, F.; Zhu, J. A first-principles study on the doping stability and micromechanical properties of alloying atoms in aluminum matrix. Vacuum 2023, 207, 111596. [Google Scholar] [CrossRef]
- Gong, C.; Lee, G.; Shan, B.; Vogel, E.M.; Wallace, R.M.; Cho, K. First-principles study of metal–graphene interfaces. J. Appl. Phys. 2010, 108, 123711. [Google Scholar] [CrossRef]
Models | Gr/Al/Å | Gr/M/Å | C Atoms | Efermi/eV | Φ/eV | Eb/eV | |
---|---|---|---|---|---|---|---|
Gr/Al | 3.54 | 3.54 | 0.00 | 5, (4) | 2.23 | 4.05 | −0.41 |
Gr/Al-B | 3.39 | 4.65 | 1.26 | 8 | 1.91 | 4.16 | −0.31 |
Gr/Al-Cr | 3.53 | 3.58 | 0.05 | 2, (3) | 2.03 | 4.15 | −0.42 |
Gr/Al-Cu | 3.45 | 3.74 | 0.29 | 4, (5) | 1.99 | 4.22 | −0.91 |
Gr/Al-Fe | 3.88 | 4.30 | 0.42 | 6, (4) | 1.92 | 4.24 | −0.33 |
Gr/Al-Mg | 3.66 | 3.27 | −0.40 | 2, (3) | 2.19 | 4.06 | −0.44 |
Gr/Al-Mn | 3.55 | 3.56 | 0.01 | 3, (2) | 2.01 | 4.17 | −0.43 |
Gr/Al-Sc | 3.71 | 2.90 | −0.80 | 1, (8) | 2.22 | 4.06 | −1.12 |
Gr/Al-Si | 3.51 | 3.66 | 0.15 | 6, (7) | 2.20 | 4.16 | −0.40 |
Gr/Al-Ti | 3.54 | 3.55 | 0.01 | 2, (3) | 2.08 | 4.05 | −0.46 |
Gr/Al-V | 3.48 | 3.69 | 0.21 | 3, (2) | 2.04 | 4.13 | −0.42 |
Gr/Al-Zn | 3.49 | 3.51 | 0.02 | 4, (5) | 1.99 | 4.18 | −0.40 |
Gr/Al-Zr | 3.80 | 3.51 | −0.28 | 2, (3) | 2.43 | 4.06 | 0.18 |
Models | Ideal Strength (N/m) | Corresponding Strain | ||||
---|---|---|---|---|---|---|
Biaxial | x | y | Biaxial | x | y | |
Gr/Al | 45.44 | 48.81 | 44.41 | 0.20 | 0.24 | 0.16 |
Gr/Al-B | 41.20 | 47.78 | 43.57 | 0.16 | 0.24 | 0.20 |
Gr/Al-Cr | 46.92 | 47.57 | 45.60 | 0.18 | 0.28 | 0.26 |
Gr/Al-Cu | 41.91 | 47.56 | 43.82 | 0.14 | 0.28 | 0.20 |
Gr/Al-Fe | 46.34 | 48.41 | 47.20 | 0.16 | 0.28 | 0.16 |
Gr/Al-Mg | 43.05 | 46.90 | 43.33 | 0.16 | 0.20 | 0.16 |
Gr/Al-Mn | 47.29 | 48.43 | 48.98 | 0.18 | 0.28 | 0.20 |
Gr/Al-Sc | 34.03 | 45.69 | 43.02 | 0.16 | 0.20 | 0.20 |
Gr/Al-Si | 42.16 | 48.79 | 42.96 | 0.14 | 0.24 | 0.16 |
Gr/Al-Ti | 41.36 | 46.91 | 44.57 | 0.12 | 0.20 | 0.20 |
Gr/Al-V | 42.80 | 46.75 | 45.12 | 0.16 | 0.28 | 0.16 |
Gr/Al-Zn | 43.06 | 47.39 | 43.97 | 0.16 | 0.20 | 0.16 |
Gr/Al-Zr | 34.79 | 44.24 | 43.85 | 0.16 | 0.20 | 0.20 |
Directions | ε | a/Å | b/Å | γ/° | dAl1-Mn/Å | dAl2-Mn/Å |
---|---|---|---|---|---|---|
biaxial | 0.12 | 5.55 | 5.55 | 120 | 4.82 | 2.78 |
0.18 | 5.85 | 5.87 | 120 | 5.10 | 2.89 | |
0.2 | 6.11 | 6.99 | 135 | 6.08 | 2.42 | |
x | 0.12 | 5.55 | 4.99 | 124 | 2.55 | 2.55 |
0.28 | 6.34 | 5.14 | 128 | 2.58 | 2.64 | |
0.32 | 6.54 | 5.08 | 127 | 2.66 | 2.60 | |
y | 0.12 | 4.82 | 5.37 | 116 | 2.76 | 2.46 |
0.2 | 4.78 | 5.66 | 115 | 2.89 | 2.44 | |
0.32 | 4.82 | 6.16 | 113 | 4.15 | 2.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Cui, C.; Xia, F.; Xu, W.; Gang, T.; Chen, L. Atomistic Doping Effects on the Ideal Strength of Graphene/Aluminum Interfaces. Materials 2025, 18, 4753. https://doi.org/10.3390/ma18204753
Wang W, Cui C, Xia F, Xu W, Gang T, Chen L. Atomistic Doping Effects on the Ideal Strength of Graphene/Aluminum Interfaces. Materials. 2025; 18(20):4753. https://doi.org/10.3390/ma18204753
Chicago/Turabian StyleWang, Wei, Can Cui, Fangfang Xia, Weiwei Xu, Tieqiang Gang, and Lijie Chen. 2025. "Atomistic Doping Effects on the Ideal Strength of Graphene/Aluminum Interfaces" Materials 18, no. 20: 4753. https://doi.org/10.3390/ma18204753
APA StyleWang, W., Cui, C., Xia, F., Xu, W., Gang, T., & Chen, L. (2025). Atomistic Doping Effects on the Ideal Strength of Graphene/Aluminum Interfaces. Materials, 18(20), 4753. https://doi.org/10.3390/ma18204753