Melting Behavior of Direct Reduced Iron Pellets with Different Carbon Content in Molten Steel and Molten Slag
Abstract
1. Introduction
2. Heat Transfer and Gas Generation Model
2.1. Heat Transfer Model
- (1)
- If the pellet’s surface temperature is below its melting point, there are no transformations, and the heat transfer is defined by Equation (12):
- (2)
- Once the pellet’s surface reaches its melting point, the heat required for the solid-to-liquid phase transformation is incorporated into Equation (12) in terms of the apparent heat capacity shown in Equation (13):
2.2. Gas Generation Model
2.3. Porosity-Dependent Thermophysical Properties
2.4. Boundary Conditions
3. Experimental Setup
4. Results and Discussion
4.1. Temperature Profiles
4.2. Shell Thickness and Gas Generation
4.3. DRI Pellet Gas Generation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Pistorius, P.C. Steelmaking Decarbonization Options with Current Technology. Met. Mater. Trans. B 2022, 53, 1335–1338. [Google Scholar] [CrossRef]
- Sun, M.; Pang, K.; Barati, M.; Meng, X. Hydrogen-Based Reduction Technologies in Low-Carbon Sustainable Ironmaking and Steelmaking: A Review. J. Sustain. Met. 2024, 10, 10–25. [Google Scholar] [CrossRef]
- DiGiovanni, C.; Echterhof, T. Progress Toward Biocarbon Utilization in Electric Arc Furnace Steelmaking: Current Status and Future Prospects. J. Sustain. Met. 2024, 10, 2047–2067. [Google Scholar] [CrossRef]
- Qian, Y.; Li, Y.; Hao, Y.; Yu, T.; Hu, H. Greenhouse gas control in steel manufacturing: Inventory, assurance, and strategic reduction review. Carbon Res. 2024, 3, 1–15. [Google Scholar] [CrossRef]
- Sun, J.; Na, H.; Yuan, Y.; Qiu, Z.; Du, T.; Li, Y.; Zhang, L.; Wang, W. A systematic review of decarbonization pathway and modeling conception in iron and steel industry at micro-, meso-, and macro-levels. Environ. Sci. Pollut. Res. 2024, 31, 60749–60777. [Google Scholar] [CrossRef] [PubMed]
- World Steel in Figures 2024—Worldsteel.org. Available online: https://worldsteel.org/data/world-steel-in-figures-2024/ (accessed on 18 February 2025).
- Ammasi, A.; Karthik, P.M.R.; Vishal, D. Slag-Metal-Refractory Interactions During Dissolution of Hydrogen-Based Directly Reduced Iron (H-DRI) in Liquid Iron Melt. J. Sustain. Met. 2024, 10, 542–556. [Google Scholar] [CrossRef]
- Suer, J.; Ahrenhold, F.; Traverso, M. Carbon Footprint and Energy Transformation Analysis of Steel Produced via a Direct Reduction Plant with an Integrated Electric Melting Unit. J. Sustain. Met. 2022, 8, 1532–1545. [Google Scholar] [CrossRef] [PubMed]
- Echterhof, T. Review on the Use of Alternative Carbon Sources in EAF Steelmaking. Metals 2021, 11, 222. [Google Scholar] [CrossRef]
- Van Ende, M.A. Development of an Electric Arc Furnace Simulation Model Using the Effective Equilibrium Reaction Zone (EERZ) Approach. JOM 2022, 74, 1610–1623. [Google Scholar] [CrossRef]
- Cavaliere, P. Hydrogen Direct Reduced Iron. In Hydrogen Assisted Direct Reduction of Iron Oxides; Springer: Berlin/Heidelberg, Germany, 2022; pp. 233–319. [Google Scholar] [CrossRef]
- Pfeiffer, A.; Ernst, D.; Zheng, H.; Wimmer, G.; Schenk, J. The Behavior of Direct Reduced Iron in the Electric Arc Furnace Hotspot. Metals 2023, 13, 978. [Google Scholar] [CrossRef]
- Pineda-Martínez, E.; Hernández-Bocanegra, C.A.; Conejo, A.N.; Ramirez-Argaez, M.A. Mathematical modeling of the melting of sponge iron in a bath of non-reactive molten slag. ISIJ Int. 2015, 55, 1906–1915. [Google Scholar] [CrossRef]
- Calderon Hurtado, F.A.; Govro, J.; Emdadi, A.; O’malley, R.J. The Melting Behavior of Hydrogen Direct Reduced Iron in Molten Steel and Slag: An Integrated Computational and Experimental Study. Metals 2024, 14, 821. [Google Scholar] [CrossRef]
- Kim, W.; Sohn, I. Critical challenges facing low carbon steelmaking technology using hydrogen direct reduced iron. Joule 2022, 6, 2228–2232. [Google Scholar] [CrossRef]
- Morales, R.D.; Rubén, L.G.; López, F.; Camacho, J.; Romero, J.A. The Slag Foaming Practice in EAF and Its Influence on the Steelmaking Shop Productivity. ISIJ Int. 1995, 35, 1054–1062. [Google Scholar] [CrossRef]
- Agnihotri, A.; Singh, P.K.; Singh, D.; Gupta, M. Foamy slag practice to enhance the energy efficiency of electric arc furnace: An industrial scale validation. Mater. Today: Proc. 2021, 46, 1537–1542. [Google Scholar] [CrossRef]
- Pfeiffer, A.; Wimmer, G.; Schenk, J. Investigations on the Interaction Behavior between Direct Reduced Iron and Various Melts. Materials 2022, 15, 5691. [Google Scholar] [CrossRef]
- Sharifi, E.; Barati, M. The reaction behavior of direct reduced iron (DRI) in steelmaking slags: Effect of DRI carbon and preheating temperature. Met. Mater. Trans. B 2010, 41, 1018–1024. [Google Scholar] [CrossRef]
- Lin, X.; Ni, B.; Shangguan, F. Numerical Simulation of the Hydrogen-Based Directly Reduced Iron Melting Process. Processes 2024, 12, 537. [Google Scholar] [CrossRef]
- Kirschen, M.; Hay, T.; Echterhof, T. Process Improvements for Direct Reduced Iron Melting in the Electric Arc Furnace with Emphasis on Slag Operation. Processes 2021, 9, 402. [Google Scholar] [CrossRef]
- O’Malley, R. The Heating and Melting of Metallic DRI Particles in Steelmaking Slags. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1983. [Google Scholar]
- ASTM C20-00(2022); Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water 1. ASTM: West Conshohocken, PA, USA, 2022. [CrossRef]
- Koh, J.C.Y.; Fortini, A. Prediction of Thermal Conductivity and Electrical Resistivity of Porous Metallic Materials. Int. J. Heat Mass Transf. 1973, 16, 10. [Google Scholar] [CrossRef]
- Ashby, M.F. Case Studies: Hybrids. In Materials Selection in Mechanical Design; Butterworth-Heinemann: Oxford, UK, 2011; pp. 341–366. [Google Scholar] [CrossRef]
- Young, H.D.; Sears, F.W. University Physics, 8th ed.; Addison Wesley Publishing Company: Boston, MA, USA, 1992; Available online: https://search.worldcat.org/title/24429258 (accessed on 18 April 2024).
- COMSOL—Software for Multiphysics Simulation. Available online: https://www.comsol.com/ (accessed on 16 January 2023).
- Sente Software—JMatPro®. Available online: https://www.sentesoftware.co.uk/jmatpro (accessed on 12 January 2023).
- Ahmed, H.; Kumar, T.S.; Alatalo, J.; Björkman, B. Effect of carbon concentration and carbon bonding type on the melting characteristics of hydrogen-reduced iron ore pellets. J. Mater. Res. Technol. 2022, 21, 1760–1769. [Google Scholar] [CrossRef]
Sample (wt. %) | C | P | SiO2 | CaO | Al2O3 | MgO | Fe | Metallization (%) |
---|---|---|---|---|---|---|---|---|
1 | 1.3 | 0.04 | 3.37 | 0.90 | 0.38 | 0.63 | 90.2 | 96.6 |
Sample (wt. %) | C | Mn | Si | Fe |
---|---|---|---|---|
Steel bath | 0.190 | 0.020 | 0.140 | 99.650 |
DRI 1.3 wt. % C | |
---|---|
Sample | Time (s) |
1 | 1 |
2 | 2 |
3 | 3 |
4 | 4 |
5 | 7 |
Parameters | Symbol | Steel Bath |
---|---|---|
Bath temperature [K] | 1875 * | |
Melting temperature [K] | 1794 [28] | |
Pellet diameter [m] | 0.0105 * | |
Latent heat of fusion [kJ kg−1] | 270 [28] |
Parameters | Symbol | DRI 1.3 wt. % C |
---|---|---|
Initial temperature [K] | 357 * | |
Melting point [K] | 1761 [28] | |
Latent heat of fusion [kJ kg−1] | 302 [28] |
Sample [22] | Diameter (mm) | Mass (g) | Chemical Composition (wt. %) | |||
---|---|---|---|---|---|---|
Carbon | Gangue | FeO | Fe | |||
CD-8-13 | 24.9 | 32.0 | 1.98 | 5.74 | 9.30 | 82.98 |
CD-8-26 | 19.2 | 14.8 | ||||
CD-7-25 | 25.0 | 32.0 | 2.37 | 6.75 | 14.64 | 76.24 |
Parameters | Samples [22] | |||
---|---|---|---|---|
CD-8-13 | CD-8-26 | CD-7-25 | Slag | |
Density [kg m−3] | 3960 | 3880 | 2900 | |
Initial temperature [°C] | 25 | 25 | 1400 | |
Melting temperature [°C] | 1503 | 1537 | 1316 | |
Thermal conductivity [W m−1 K−1] | 2.5 | 2.5 | 1.17 (solid) 1.33 (Liquid) | |
Latent heat of fusion [kJ kg−1] | 293 | 247 | 920 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calderon Hurtado, F.A.; Govro, J.; Emdadi, A.; O’Malley, R.J. Melting Behavior of Direct Reduced Iron Pellets with Different Carbon Content in Molten Steel and Molten Slag. Materials 2025, 18, 4749. https://doi.org/10.3390/ma18204749
Calderon Hurtado FA, Govro J, Emdadi A, O’Malley RJ. Melting Behavior of Direct Reduced Iron Pellets with Different Carbon Content in Molten Steel and Molten Slag. Materials. 2025; 18(20):4749. https://doi.org/10.3390/ma18204749
Chicago/Turabian StyleCalderon Hurtado, Fabian Andres, Joseph Govro, Arezoo Emdadi, and Ronald J. O’Malley. 2025. "Melting Behavior of Direct Reduced Iron Pellets with Different Carbon Content in Molten Steel and Molten Slag" Materials 18, no. 20: 4749. https://doi.org/10.3390/ma18204749
APA StyleCalderon Hurtado, F. A., Govro, J., Emdadi, A., & O’Malley, R. J. (2025). Melting Behavior of Direct Reduced Iron Pellets with Different Carbon Content in Molten Steel and Molten Slag. Materials, 18(20), 4749. https://doi.org/10.3390/ma18204749