Optical Absorption Properties of Sn- and Pd-doped ZnO: Comparative Analysis of Substitutional Metallic Impurities
Abstract
1. Introduction
2. Model and Computational Details
3. Results and Discussion
3.1. Structures and Energies
3.2. Electronic Density of States
3.3. Optical Absorption Properties
3.4. Orbital-Resolved Density
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DFT | Density Functional Theory |
| DOS | Density of states |
| LDA | Local density approximation |
| QE | QuantumEspresso |
References
- Klingshirn, C. ZnO: From basics towards applications. Phys. Status Solidi (b) 2007, 244, 3027–3073. [Google Scholar] [CrossRef]
- Wang, J.X.; Sun, X.W.; Yang, Y.; Huang, H.; Lee, Y.C.; Tan, O.K.; Vayssieres, L. Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications. Nanotechnology 2006, 17, 4995. [Google Scholar] [CrossRef]
- Dalal, S.H.; Baptista, D.L.; Teo, K.B.K.; Lacerda, R.G.; Jefferson, D.A.; Milne, W.I. Controllable growth of vertically aligned zinc oxide nanowires using vapour deposition. Nanotechnology 2006, 17, 4811. [Google Scholar] [CrossRef]
- Özgür, Ü.; Hofstetter, D.; Morkoç, H. ZnO Devices and Applications: A Review of Current Status and Future Prospects. Proc. IEEE 2010, 98, 1255–1268. [Google Scholar] [CrossRef]
- Djurišić, A.B.; Chen, X.; Leung, Y.H.; Man Ching Ng, A. ZnO nanostructures: Growth, properties and applications. J. Mater. Chem. 2012, 22, 6526–6535. [Google Scholar] [CrossRef]
- Liu, X.; Liu, M.H.; Luo, Y.C.; Mou, C.Y.; Lin, S.D.; Cheng, H.; Chen, J.M.; Lee, J.F.; Lin, T.S. Strong Metal–Support Interactions between Gold Nanoparticles and ZnO Nanorods in CO Oxidation. J. Am. Chem. Soc. 2012, 134, 10251–10258. [Google Scholar] [CrossRef]
- Nakano, M.; Makino, T.; Tsukazaki, A.; Ueno, K.; Ohtomo, A.; Fukumura, T.; Yuji, H.; Akasaka, S.; Tamura, K.; Nakahara, K.; et al. Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO. Appl. Phys. Lett. 2008, 93, 123309. [Google Scholar] [CrossRef]
- Strunk, J.; Kähler, K.; Xia, X.; Muhler, M. The surface chemistry of ZnO nanoparticles applied as heterogeneous catalysts in methanol synthesis. Surf. Sci. 2009, 603, 1776–1783. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, Y.; Ding, Y.; Povey, M.; York, D. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanoparticle Res. 2007, 9, 479–489. [Google Scholar] [CrossRef]
- Gao, P.; Song, J.; Liu, J.; Wang, Z. Nanowire Piezoelectric Nanogenerators on Plastic Substrates as Flexible Power Sources for Nanodevices. Adv. Mater. 2007, 19, 67–72. [Google Scholar] [CrossRef]
- Sha, R.; Basak, A.; Maity, P.C.; Badhulika, S. ZnO nano-structured based devices for chemical and optical sensing applications. Sens. Actuators Rep. 2022, 4, 100098. [Google Scholar] [CrossRef]
- Barman, B.; Swami, S.K.; Dutta, V. Fabrication of highly conducting ZnO/Ag/ZnO and AZO/Ag/AZO transparent conducting oxide layers using RF magnetron sputtering at room temperature. Mater. Sci. Semicond. Process. 2021, 129, 105801. [Google Scholar] [CrossRef]
- Zhang, D.; Yu, W.; Zhang, L.; Hao, X. Progress in the synthesis and application of transparent conducting film of AZO (ZnO: Al). Materials 2023, 16, 5537. [Google Scholar] [CrossRef] [PubMed]
- Sanakousar, F.; Vidyasagar, C.; Jiménez-Pérez, V.; Prakash, K. Recent progress on visible-light-driven metal and non-metal doped ZnO nanostructures for photocatalytic degradation of organic pollutants. Mater. Sci. Semicond. Process. 2022, 140, 106390. [Google Scholar] [CrossRef]
- Mohamed, K.; Benitto, J.J.; Vijaya, J.J.; Bououdina, M. Recent advances in ZnO-based nanostructures for the photocatalytic degradation of hazardous, non-biodegradable medicines. Crystals 2023, 13, 329. [Google Scholar] [CrossRef]
- Jiang, Z.; Cheng, B.; Zhang, L.; Zhang, Z.; Bie, C. A review on ZnO-based S-scheme heterojunction photocatalysts. Chin. J. Catal. 2023, 52, 32–49. [Google Scholar]
- Nuruddin, A.; Abelson, J. Improved transparent conductive oxide/p+/i junction in amorphous silicon solar cells by tailored hydrogen flux during growth. Thin Solid Films 2001, 394, 48–62. [Google Scholar] [CrossRef]
- Sharma, D.K.; Shukla, S.; Sharma, K.K.; Kumar, V. A review on ZnO: Fundamental properties and applications. Mater. Today Proc. 2022, 49, 3028–3035. [Google Scholar] [CrossRef]
- Qiao, F.; Sun, K.; Chu, H.; Wang, J.; Xie, Y.; Chen, L.; Yan, T. Design strategies of ZnO heterojunction arrays towards effective photovoltaic applications. Battery Energy 2022, 1, 20210008. [Google Scholar] [CrossRef]
- Vittal, R.; Ho, K.C. Zinc oxide based dye-sensitized solar cells: A review. Renew. Sustain. Energy Rev. 2017, 70, 920–935. [Google Scholar] [CrossRef]
- Ma, Z.; Luo, C.; Wang, C.; Liu, J. Study of optical properties of ZnO doped with Fe. Optik 2019, 188, 104–109. [Google Scholar] [CrossRef]
- Li, L.; Wang, W.; Liu, H.; Liu, X.; Song, Q.; Ren, S. First principles calculations of electronic band structure and optical properties of Cr-doped ZnO. J. Phys. Chem. C 2009, 113, 8460–8464. [Google Scholar] [CrossRef]
- Joseph, D.P.; Venkateswaran, C. Bandgap engineering in ZnO by doping with 3d transition metal ions. J. At. Mol. Phys. 2011, 2011, 270540. [Google Scholar] [CrossRef]
- Ma, Z.; Ren, F.; Ming, X.; Long, Y.; Volinsky, A.A. Cu-doped ZnO electronic structure and optical properties studied by first-principles calculations and experiments. Materials 2019, 12, 196. [Google Scholar] [CrossRef] [PubMed]
- Toma, M.; Selyshchev, O.; Havryliuk, Y.; Pop, A.; Zahn, D.R.T. Optical and Structural Characteristics of Rare Earth-Doped ZnO Nanocrystals Prepared in Colloidal Solution. Photochem 2022, 2, 515–527. [Google Scholar] [CrossRef]
- Kibria, M.G.; Paul, U.K.; Mohtasim, M.S.; Das, B.K.; Mustafi, N. Characterization, optimization, and performance evaluation of PCM with Al2O3 and ZnO hybrid nanoparticles for photovoltaic thermal energy storage. Energy Built Environ. 2024, in press. [CrossRef]
- Green, M.; Dunlop, E.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Siefer, G.; Hinken, D.; Rauer, M.; Hohl-Ebinger, J.; Hao, X. Solar energy in space applications: Review and technology perspectives. Prog. Photovolt. Res. Appl. 2024, 32, 425–441. [Google Scholar] [CrossRef]
- Huong, T.T.T.; Sa, N.T.; Thuy, N.T.M.; Hao, P.V.; Thao, N.H.; Hien, N.T.; Ca, N.X. Eu3+-doped ZnO quantum dots: Structure, vibration characteristics, optical properties, and energy transfer process. Nanoscale Adv. 2025, 7, 909–921. [Google Scholar] [CrossRef]
- Vieii, F.H.; Havigh, R.S.; Chenari, H.M. Electrospun preparation of nickel and Cobalt-doped ZnO fibers: Study on the physical properties. Sci. Rep. 2025, 15, 10898. [Google Scholar] [CrossRef]
- Jusoh, Y.N.; Aliyaselvam, O.V.; Zainal, N.A.; Mustafa, A.N.; Shah, A.S.M.; Salehuddin, F.; Arith, F. Formulation of Nb-doped ZnO nanoparticles towards improved photo conversion performance via luminescent down-shifting of the incident spectrum. Int. J. Renew. Energy Dev.-IJRED 2025, 14, 441–449. [Google Scholar] [CrossRef]
- Osama, R.A.A.; Samad, S.A.; Saher, S.; Ahmed, I.; Tunio, M.A.; Cheung, R. Computational study of structural and optical properties of ZnO system through elemental Mn & Y doping using first-principles calculations. Mater. Today Commun. 2025, 46, 112959. [Google Scholar] [CrossRef]
- Gerward, L.; Olsen, J.S. The high-pressure phase of zincite. J. Synchrotron Radiat. 1995, 2, 233–235. [Google Scholar] [CrossRef] [PubMed]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M.B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced capabilities for materials modelling with QUANTUM ESPRESSO. J. Phys.-Condens. Matter 2017, 29, 465901. [Google Scholar] [CrossRef] [PubMed]
- Hamann, D.R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 2013, 88, 085117. [Google Scholar] [CrossRef]
- Hartwigsen, C.; Goedecker, S.; Hutter, J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 1998, 58, 3641–3662. [Google Scholar] [CrossRef]
- Anisimov, V.I.; Zaanen, J.; Andersen, O.K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 1991, 44, 943–954. [Google Scholar] [CrossRef]
- Liechtenstein, A.I.; Anisimov, V.I.; Zaanen, J. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 1995, 52, R5467–R5470. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Srikant, V.; Clarke, D.R. On the optical band gap of zinc oxide. J. Appl. Phys. 1998, 83, 5447–5451. [Google Scholar] [CrossRef]
- Goh, E.; Mah, J.; Yoon, T. Effects of Hubbard term correction on the structural parameters and electronic properties of wurtzite ZnO. Comput. Mater. Sci. 2017, 138, 111–116. [Google Scholar] [CrossRef]
- Pfrommer, B.G.; Côté, M.; Louie, S.G.; Cohen, M.L. Relaxation of Crystals with the Quasi-Newton Method. J. Comput. Phys. 1997, 131, 233–240. [Google Scholar] [CrossRef]
- Göpel, W.; Pollmann, J.; Ivanov, I.; Reihl, B. Angle-resolved photoemission from polar and nonpolar zinc oxide surfaces. Phys. Rev. B 1982, 26, 3144–3150. [Google Scholar] [CrossRef]
- Kresse, G.; Dulub, O.; Diebold, U. Competing stabilization mechanism for the polar ZnO(0001)-Zn surface. Phys. Rev. B 2003, 68, 245409. [Google Scholar] [CrossRef]
- Meyer, B.; Marx, D. Density-functional study of the structure and stability of ZnO surfaces. Phys. Rev. B 2003, 67, 035403. [Google Scholar] [CrossRef]
- Silva, W.S.; Stiehler, C.; Soares, E.A.; Bittar, E.M.; Cezar, J.C.; Kuhlenbeck, H.; Freund, H.J.; Cisternas, E.; Stavale, F. Hydrogen-induced metallization on the ZnO(0001) surface. Phys. Rev. B 2018, 98, 155416. [Google Scholar] [CrossRef]
- Aguilera-Granja, F.; del Toro, R.A.; Vogel, E.; Cisternas, E. TiO2 nano-clusters adsorbed on surfaces: A density-functional-theoretic study. J. Phys. Chem. Solids 2021, 150, 109716. [Google Scholar] [CrossRef]
- Alam, M.S.; Saiduzzaman, M.; Biswas, A.; Ahmed, T.; Sultana, A.; Hossain, K.M. Tuning band gap and enhancing optical functions of AGeF3 (A = K, Rb) under pressure for improved optoelectronic applications. Sci. Rep. 2022, 12, 8663. [Google Scholar] [CrossRef]
- Cisternas, E.; Aguilera-del Toro, R.; Aguilera-Granja, F.; Vogel, E.E. Effect of Substitutional Metallic Impurities on the Optical Absorption Properties of TiO2. Nanomaterials 2024, 14, 1224. [Google Scholar] [CrossRef]
- Ehrenreich, H.; Cohen, M.H. Self-Consistent Field Approach to the Many-Electron Problem. Phys. Rev. 1959, 115, 786–790. [Google Scholar] [CrossRef]
- Tsafack, T.; Piccinini, E.; Lee, B.S.; Pop, E.; Rudan, M. Electronic, optical and thermal properties of the hexagonal and rocksalt-like Ge2Sb2Te5 chalcogenide from first-principle calculations. J. Appl. Phys. 2011, 110, 063716. [Google Scholar] [CrossRef]
- Eddiouane, A.; Chaib, H.; Nafidi, A.; Najjaoui, M.; Ait-Taleb, T. First principles investigation of electronic properties and high refractive index of rutile TiO2 for photovoltaic applications. AIP Conf. Proc. 2018, 2056, 020005. [Google Scholar] [CrossRef]











| Impurity | a | b | c | c/a | |||
|---|---|---|---|---|---|---|---|
| Å | μB/cell | meV | eV | ||||
| Cu | 3.212 | 3.212 | 5.126 | 1.596 | 1.0 | 32.6 | 2.1 |
| Ga | 3.209 | 3.209 | 5.143 | 1.603 | 0.0 | 0.0 | 0.2 |
| Cd | 3.248 | 3.248 | 5.199 | 1.601 | 0.0 | 0.0 | 3.5 |
| Pd | 3.217 | 3.217 | 5.164 | 1.602 | 1.9 | 3.5 | 0.0 |
| Ag | 3.218 | 3.218 | 5.155 | 1.602 | 0.0 | 0.0 | 0.0 |
| In | 3.225 | 3.225 | 5.164 | 1.601 | 0.0 | 0.0 | 0.2 |
| Sn | 3.220 | 3.220 | 5.194 | 1.623 | 0.0 | 0.0 | 1.4 |
| (Pristine) | 3.206 | 3.206 | 5.126 | 1.599 | 0.0 | 0.0 | 3.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cisternas, V.; Díaz, P.; Guevara, U.; Laroze, D.; Cisternas, E. Optical Absorption Properties of Sn- and Pd-doped ZnO: Comparative Analysis of Substitutional Metallic Impurities. Materials 2025, 18, 4613. https://doi.org/10.3390/ma18194613
Cisternas V, Díaz P, Guevara U, Laroze D, Cisternas E. Optical Absorption Properties of Sn- and Pd-doped ZnO: Comparative Analysis of Substitutional Metallic Impurities. Materials. 2025; 18(19):4613. https://doi.org/10.3390/ma18194613
Chicago/Turabian StyleCisternas, Vicente, Pablo Díaz, Ulises Guevara, David Laroze, and Eduardo Cisternas. 2025. "Optical Absorption Properties of Sn- and Pd-doped ZnO: Comparative Analysis of Substitutional Metallic Impurities" Materials 18, no. 19: 4613. https://doi.org/10.3390/ma18194613
APA StyleCisternas, V., Díaz, P., Guevara, U., Laroze, D., & Cisternas, E. (2025). Optical Absorption Properties of Sn- and Pd-doped ZnO: Comparative Analysis of Substitutional Metallic Impurities. Materials, 18(19), 4613. https://doi.org/10.3390/ma18194613

