The Impact of Selected ESD Parameters on the Properties of Tungsten Layers
Abstract
1. Introduction
2. Materials and Methods
2.1. Planned Experiment
- -
- Voltage—U, took the values 300, 400, 500, 600, 700 V, which correspond to the code values: −2; −1; 0; 1; 2;
- -
- Capacitor capacity—f, took the values 25, 50, 75, 133 µF, which correspond to the code values: −2, −1, 0, 2 [29].
2.2. Materials and Electro-Spark Deposition
2.3. A Metallographic Study
2.4. Hardness Properties
2.5. Tribology Tests
- Load (P) = 10 N;
- Sliding velocity (V) = 0.1 m/s;
- Sliding distance (S) = 1000 m;
- Friction node: a ball of 100Cr6 steel;
- Lubricant-no;
- Radius: 12 mm.
2.6. Tomography Examination
3. Discussion and Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gould, J. Application of electro-spark deposition as a joining technology. J. Weld. 2011, 90, 191–197. [Google Scholar]
- Ebrahimnia, M.; Ghaini, F.M.; Shahverdi, H.R. Hot cracking in pulsed laser processing of a nickel based superalloy built up by electrospark deposition. Sci. Technol. Weld. Join. 2014, 19, 25–29. [Google Scholar] [CrossRef]
- Ebrahimnia, M.; Ghaini, F.M.; Xie, Y.J.; Shahverdi, H. Microstructural characteristics of the built up layer of a precipitation hard-ened nickel based superalloy by electrospark deposition. Surf. Coat. Technol. 2014, 258, 515–523. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M.; Dai, S.; Zhu, L. Research Progress in Electrospark Deposition Coatings on Titanium Alloy Surfaces: A Short Review. Coatings 2023, 13, 1473. [Google Scholar] [CrossRef]
- Ebrahimnia, M.; Malek Ghaini, F.; Xie, Y.J.; Shahverdi, H.R. Developing new microstructure through laser melting of electrospark layer of precipitation hardened nickel based superalloy. Sci. Technol. Weld. Join. 2016, 21, 570–577. [Google Scholar] [CrossRef]
- Sütőová, A.; Kočiško, R.; Petroušek, P.; Kotus, M.; Petryshynets, I.; Pylypenko, A. Study of PVD-Coated Inserts’ Lifetime in High-Pressure Die Casting Regarding the Requirements for Surface Quality of Castings. Coatings 2024, 14, 1043. [Google Scholar] [CrossRef]
- Tang, S.K. The Process Fundamentals and Parameters of Electro-Spark Deposition. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2009. [Google Scholar]
- Zheng, X.; Huang, M.; Ding, C. Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings. Biomaterials 2000, 21, 841–849. [Google Scholar] [CrossRef]
- Terebun, P.; Wójcik, M.; Trzaskowska, M.; Kwiatkowski, M.; Zarzeczny, D.; Kazimierczak, P.; Pawłat, J.; Przekora, A. Surface modifications of biomaterial with different cold plasma reactors to improve cell adhesion. Eng. Biomater. 2022, 25, 2–6. [Google Scholar] [CrossRef]
- Buranych, V.V.; Pogrebnjak, A.D.; Pogorielov, M.; Diedkova, K.; Aubakirova, D.; Savitskaya, I.; Kupchishin, A.I.; Kulenova, N. Characterization, mechanical and biomedical properties of titanium oxynitride coating. Ceram. Int. 2023, 49, 28167–28174. [Google Scholar] [CrossRef]
- Liu, C.; Bi, Q.; Matthews, A. Tribological and electrochemical performance of PVD TiN coatings on the femoral head of Ti–6Al–4V artificial hip joints. Surf. Coat. Technol. 2003, 163–164, 597–604. [Google Scholar] [CrossRef]
- Xiao, X.F.; Liu, R.F.; Zheng, Y.Z. Hydoxyapatite/titanium composite coating prepared by hydrothermal–electrochemical tech-nique. Mater. Lett. 2005, 59, 1660–1664. [Google Scholar] [CrossRef]
- Seyed, M.N.; Ali, P.; Mojtaba, A.; Fathollah, M. Development and Characterization of 316 L Stainless Steel Coated by Melt-derived and Sol-gel derived 45S5 Bioglass for orthopedic applications. Ceram. Silikáty 2012, 56, 89–93. [Google Scholar]
- Liu, W.; Liu, S.; Wang, L. Surface Modification of Biomedical Titanium Alloy: Micromorphology, Microstructure Evolution and Biomedical Applications. Coatings 2019, 9, 249. [Google Scholar] [CrossRef]
- Da Silva, L.L.G.; Ueda, M.; Silva, M.M.; Codaro, E.N. Corrosion behavior of Ti-6Al-4V alloy treated by plasma immersion ion implantation process. Surf. Coat. Technol. 2007, 201, 8136–8139. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, J.; Scheideler, L.; Reichl, R.; Geis-Gerstorfer, J. Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials 2004, 25, 4087–4103. [Google Scholar] [CrossRef] [PubMed]
- Huan, Z.; Maryam, N.; Sarit, B.B. Microwave assisted apatite coating deposition on Ti6Al4V implants. Mater. Sci. Eng. C 2013, 33, 4435–4443. [Google Scholar] [CrossRef]
- Anselme, K.; Bigerelle, M. Topography effects of pure titanium substrates on human osteoblast long-term adhesion. Acta Bio-Mater. 2005, 1, 211–222. [Google Scholar] [CrossRef]
- Zhecheva, A.; Malinov, S.; Sha, W. Titanium alloys after surface gas nitriding. Surf. Coat. Technol. 2006, 201, 2467–2474. [Google Scholar] [CrossRef]
- Brama, M.; Rhodese, N.; Hunt, J.; Ricci, A.; Teghil, R.; Migliaccio, S.; Della Rocca, C.; Leccisotti, S.; Lioi, A.; Scandurra, M.; et al. Effect of titanium carbide coating on the osseointegration response in vitro and in vivo. Biomaterials 2007, 28, 595–608. [Google Scholar] [CrossRef]
- Katić, J.; Krivačić, S.; Petrović, Ž.; Mikić, D.; Marciuš, M. Titanium Implant Alloy Modified by Electrochemically Deposited Functional Bioactive Calcium Phosphate Coatings. Coatings 2023, 13, 640. [Google Scholar] [CrossRef]
- Kayali, Y.; Yalçin, M.C.; Buyuksagis, A. Effect of electro spark deposition coatings on surface hardness and corrosion resistance of ductile iron. Can. Metall. Q. 2022, 62, 483–496. [Google Scholar] [CrossRef]
- Mlynarczyk, P.; Spadlo, S. The analysis of the effects formation iron—Tungsten carbide layer on aluminum alloy by electrical discharge alloying process. In Proceedings of the 25th Anniversary International Conference on Metallurgy and Materials (METAL), Brno, Czech Republic, 25–27 May 2016; pp. 1109–1114. [Google Scholar]
- Radek, N.; Pietraszek, J.; Szczotok, A. Technology and application of electro-spark deposited coatings. In Proceedings of the 26th International Conference on Metallurgy and Materials, Brno, Czech Republic, 24–26 May 2017; pp. 1432–1437. [Google Scholar]
- Salmaliyan, M.; Malek Ghaeni, F.; Ebrahimnia, M. Effect of electro spark deposition process parameters on WC-Co coating on H13 steel. Surf. Coat. Technol. 2017, 321, 81–89. [Google Scholar] [CrossRef]
- Reynold, J.L.; Holdren, R.L.; Brown, L.E. Electro-Spark Deposition. Adv. Mater. Process 2003, 161, 35–37. [Google Scholar]
- Champagne, V.; Pepi, M.; Edwards, B. Electrospark Deposition for the Repair of Army Main Battle Tank Components; Army Research Laboratory: Adelphi, MD, USA, 2006. [Google Scholar]
- Shi, H.; Liu, D.; Pan, Y.; Zhao, W.; Zhang, X.; Ma, A.; Liu, B.; Hu, Y.; Wang, W. Effect of Shot Peening and Vibration Finishing on the Fatigue Behavior of TC17 Titanium Alloy at Room and High Temperature. Int. J. Fatigue 2021, 151, 106391. [Google Scholar] [CrossRef]
- Bańkowski, D.; Kiljan, A.; Hlaváčová, I.M.; Młynarczyk, P. Influence of Selected Factors of Vibratory Work Hardening Machining on the Properties of CuZn30 Brass. Materials 2024, 17, 5913. [Google Scholar] [CrossRef]
- Planowanie Doświadczeń (DOE). Available online: https://www.statsoft.pl/textbook/stathome_stat.html?https%3A%2F%2Fwww.statsoft.pl%2Ftextbook%2Fstexdes.html (accessed on 7 August 2025).
- Denkowska, S.; Fijorek, K.; Salamaga, M.; Sokołowski, A. Empiryczna ocena mocy testów dla wielu wariancji. Przegląd Stat. 2009, 56, 26–39. [Google Scholar] [CrossRef]
- Magiera, R. Modele I Metody Statystyki Matematycznej; Oficyna Wydawnicza GiS: Warsaw, Poland, 2002. [Google Scholar]
- Madej, M.; Kowalczyk, J.; Kowalski, M.; Grabowski, P.; Wernik, J. Tribological Properties of Selected Ionic Liquids in Lubricated Friction Nodes. Materials 2025, 18, 18. [Google Scholar] [CrossRef]
- Milewski, K.; Piotrowska, K.; Madej, M. Assessment of the properties of diamond-like carbon coatings (DLC) used in the lime industry. Metalurgija 2024, 63, 81–84. [Google Scholar]
- Madej, M.; Radon-Kobus, K.; Milewski, K.; Drabik, S.; Piotrowska, K.; Kowalczyk, J. Tribological properties of diamond-like-carbon coating doped with tungsten. Metalurgija 2024, 63, 85–88. [Google Scholar]
- Bańkowski, D.; Nowakowski, Ł.; Skrzyniarz, M.; Błasiak, S.; Kurp, P.; Depczyński, W.P.; Młynarczyk, P.S. Evaluating the impact of the tool and additional fruit cutting on changes of pitted cherries using digital volume correlation with computed tomography. Adv. Sci. Technol. Res. J. 2025, 19, 162–175. [Google Scholar] [CrossRef] [PubMed]
- Bay, B.K. Methods and applications of digital volume correlation. J. Strain Anal. Eng. Des. 2008, 43, 745–760. [Google Scholar] [CrossRef]
- Depczyński, W.P.; Bańkowski, D.; Młynarczyk, P.S. Computed Tomography and Scanning Electron Microscopy Analysis of a Friction Stir Welded Al-Cu Joint. Arch. Foundry Eng. 2023, 23, 65–71. [Google Scholar] [CrossRef]
- Konhol, J. Wprowadzenie do Praktycznego Planowania Eksperymentu; StatSoft Polska: Kraków, Poland, 2008; pp. 43–58. [Google Scholar]
- Matuszak, J. Analysis of Geometric Surface Structure and Surface Layer Microhardness of Ti6Al4V Titanium Alloy after Vibratory Shot Peening. Materials 2023, 16, 6983. [Google Scholar] [CrossRef]
- Radziejewska, J.; Marczak, M.; Maj, P.; Głowacki, D. The Influence of Vibro-Assisted Abrasive Processing on the Surface Roughness and Sub-Surface Microstructure of Inconel 939 Specimen Made by LPBF. Materials 2023, 16, 7429. [Google Scholar] [CrossRef] [PubMed]
- Bańkowski, D.; Młynarczyk, P.; Hlaváčová, I.M. Temperature Measurement during Abrasive Water Jet Machining (AWJM). Materials 2022, 15, 7082. [Google Scholar] [CrossRef] [PubMed]
- Barile, C.; Casavola, C.; Pappalettera, G.; Renna, G. Advancements in Electrospark Deposition (ESD) Technique: A Short Review. Coatings 2022, 12, 1536. [Google Scholar] [CrossRef]
- Chen, J.C. Influence of Ultrasonic Vibration on the Discharge Mechanism and Surface Quality of Electric Spark Deposition. Master’s Thesis, Henan University of Science and Technology, Luoyang, China, 2020. [Google Scholar]
- Wang, S.; Tong, J.Z.; Han, H.B. An automatic control device of contact force for electro-spark deposition and deposition test. Trans. China Weld. Inst. 2021, 42, 42–47. [Google Scholar]
- Frangini, S.; Masci, A. A study on the effect of a dynamic contact force control for improving electrospark coating properties. Surf. Coat. Technol. 2010, 204, 2613–2623. [Google Scholar] [CrossRef]
- Liu, H.; Huang, L.; Wang, D.; Chen, C.; Cui, A.; Dong, S.; Duan, Z. Preparation Process of WC Wear-Resistant Coating on Titanium Alloys Using Electro-Spark Deposition. Arch. Metall. Mater. 2025, 70, 509–514. [Google Scholar] [CrossRef]
- Rukanskis, M. Control of metal surface mechanical and tribological characteristics using cost effective electro- spark deposition. Surf. Eng. Appl. Electrochem. 2019, 55, 607–619. [Google Scholar] [CrossRef]
- Kayali, Y.; Talaş, Ş. Investigation on Wear Behavior of Steels Coated with WC by ESD Technique. Prot. Met. Phys. Chem. Surf. 2021, 57, 106–112. [Google Scholar] [CrossRef]
- Buğday, M.; Karalı, M.; Talaş, Ş. Wear Performance of GGG60 Ductile Iron Rollers Coated with WC-Co by Electro Spark Deposition. Rev. Met. 2023, 59, e249. [Google Scholar] [CrossRef]
No. Experiment | Capacitor Capacity—f, µF | Voltage—U, V | Δmw, Mass Loss of the Sample After Tribology Test, [g] | Δmb, Mass Loss of the Counter-Sample After Tribology Test, [g] | t, Average Thickness of the Layer, [µm] |
---|---|---|---|---|---|
1 | 25 | 400 | 0.0023 | 0.001 | 97 |
2 | 50 | 400 | 0.0021 | 0.0012 | 172 |
3 | 25 | 600 | 0.002 | 0.0016 | 133 |
4 | 50 | 600 | 0.0013 | 0.0038 | 150 |
5 | 75 | 300 | 0.0022 | 0.0009 | 111 |
6 | 75 | 700 | 0.0009 | 0.0041 | 298 |
7 | 50 | 500 | 0.002 | 0.003 | 109 |
8 | 133 | 500 | 0.0016 | 0.0019 | 197 |
9 | 75 | 500 | 0.0022 | 0.0015 | 110 |
10 | 75 | 500 | 0.0021 | 0.0016 | 110 |
Fe—Cast Iron Composition | |||||
---|---|---|---|---|---|
C 3.8776 | Si 3.9735 | Mn 0.3373 | P 0.0725 | S 0.2386 | Cr 0.0465 |
Mo < 0.002 | Ni 0.0172 | Al < 0.002 | Cu 0.0367 | B 0.0089 | Ti 0.0516 |
V 0.0136 | W < 0.01 | Co 0.0074 | Ca 0.0037 | Nb 0.0027 | Sn < 0.002 |
Pb < 0.005 | Zn < 0.002 | Zr 0.0045 | Sb < 0.01 | Ce < 0.005 | La < 0.005 |
Mg 0.0012 | Te 0.0004 | Se < 0.003 | Ta < 0.003 | Fe 91.2984 | - |
Sum of Squares (SS) | Number of Degrees of Freedom | Mean Square | F | P | Influence % | |
---|---|---|---|---|---|---|
Model | 1.141 | 1 | 1.141 | 12.33 | 0.008 | |
U | 1.141 | 1 | 1.141 | 12.33 | 0.008 | 100 |
Error | 0.740 | 8 | 0.093 | |||
Total SS | 1.881 | 9 | R2 = 0.61 | R2-Adj = 0.56 |
Sum of Squares (SS) | Number of Degrees of Freedom | Mean Square | F | P | Influence % | |
---|---|---|---|---|---|---|
Model | 7.68 | 1 | 7.68 | 14.08 | 0.006 | |
U | 7.68 | 1 | 7.68 | 14.08 | 0.006 | 100 |
Error | 4.36 | 8 | 0.55 | |||
Total SS | 12.04 | 9 | R2 = 0.64 | R2-Adj = 0.59 |
Sum of Squares (SS) | Number of Degrees of Freedom | Mean Square | F | P | Influence % | |
---|---|---|---|---|---|---|
Model | 12,545.33 | 1 | 12,545.33 | 4.66 | 0.06 | |
U | 12,545.33 | 1 | 12,545.33 | 4.66 | 0.06 | 100 |
Error | 21,534.77 | 8 | 2691.85 | |||
Total SS | 34,080.10 | 9 | R2 = 0.37 | R2-Adj = 0.29 |
The Regression Equation | R | R2 | R2-Adj |
---|---|---|---|
0.78 | 0.61 | 0.56 | |
0.80 | 0.64 | 0.59 | |
0.59 | 0.35 | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Młynarczyk, P.; Bańkowski, D.; Depczyński, W. The Impact of Selected ESD Parameters on the Properties of Tungsten Layers. Materials 2025, 18, 4581. https://doi.org/10.3390/ma18194581
Młynarczyk P, Bańkowski D, Depczyński W. The Impact of Selected ESD Parameters on the Properties of Tungsten Layers. Materials. 2025; 18(19):4581. https://doi.org/10.3390/ma18194581
Chicago/Turabian StyleMłynarczyk, Piotr, Damian Bańkowski, and Wojciech Depczyński. 2025. "The Impact of Selected ESD Parameters on the Properties of Tungsten Layers" Materials 18, no. 19: 4581. https://doi.org/10.3390/ma18194581
APA StyleMłynarczyk, P., Bańkowski, D., & Depczyński, W. (2025). The Impact of Selected ESD Parameters on the Properties of Tungsten Layers. Materials, 18(19), 4581. https://doi.org/10.3390/ma18194581