Mechanical Properties of 3D-Printed Titanium Alloy Titanflex® Compared to Conventional Materials for Removable Denture Bases: An Experimental Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3D | Three-Dimensional |
Ag | Uniform Elongation |
Agt | Total Uniform Elongation |
A | Breaking Elongation |
At | Total Breaking Elongation |
CLP | Classification, Labeling and Packaging (Regulation (EC) No. 1272/2008) |
CMR | Carcinogenic, Mutagenic, and Toxic to Reproduction |
Co | Cobalt |
Co-Cr | Cobalt-Chromium |
CNC | Computer Numerical Control |
Cr | Chromium |
d0 | Initial Diameter of Gauge Length |
d1 | Diameter of Gripping Section |
E | Modulus of Elasticity |
EU | European Union |
Fm | Maximum Load |
hmin | Minimum Height of Gripping Section |
ISO | International Organization for Standardization |
L0 | Gauge Length |
Lcmin | Minimum Clamping Length |
Ltmin | Minimum Total Length |
MDR | Medical Device Regulation (EU 2017/745) |
Rmin | Minimum Radius Between Gauge and Grip Section |
Rm | Ultimate Tensile Strength |
Rp0.2 | Proof Stress at 0.2% Strain |
S0 | Initial Cross-Sectional Area |
SD | Standard Deviation |
SLM | Selective Laser Melting |
Ti | Titanium |
Ti0 | Titanflex® Printed at 0° |
Ti45 | Titanflex® Printed at 45° |
Ti90 | Titanflex® Printed at 90° |
References
- Chen, Y.; Wei, J. Application of 3D Printing Technology in Dentistry: A Review. Polymers 2025, 17, 886. [Google Scholar] [CrossRef]
- Hoque, M.E.; Showva, N.N.; Ahmed, M.; Rashid, A.B.; Sadique, S.E.; El-Bialy, T.; Xu, H. Titanium and Titanium Alloys in Dentistry: Current Trends and Future Perspectives. Mater. Sci. Eng. C 2022, 135, 112667. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, M.Y.; Knowles, J.C.; Choi, S.; Kang, H.; Park, S.H.; Park, S.M.; Kim, H.W.; Park, J.T.; Lee, J.H.; et al. Mechanophysical and Biological Properties of a 3D-Printed Titanium Alloy for Dental Applications. Dent. Mater. 2020, 36, 945–958. [Google Scholar] [CrossRef]
- da Costa Valente, M.L.; de Oliveira, T.T.; Kreve, S.; Batalha, R.L.; de Oliveira, D.P.; Pauly, S.; Bolfarini, C.; Bachmann, L.; Dos Reis, A.C. Analysis of the Mechanical and Physicochemical Properties of Ti-6Al-4V Discs Obtained by Selective Laser Melting and Subtractive Manufacturing Method. J. Biomed. Mater. Res. B Appl. Biomater. 2021, 109, 420–427. [Google Scholar] [CrossRef]
- Marin, E.; Lanzutti, A. Biomedical applications of titanium alloys: A comprehensive review. Materials 2023, 17, 114. [Google Scholar] [CrossRef]
- Yang, J.; Liu, C.; Sun, H.; Liu, Y.; Liu, Z.; Zhang, D.; Zhao, G.; Wang, Q.; Yang, D. The Progress in Titanium Alloys Used as Biomedical Implants. Front. Bioeng. Biotechnol. 2022, 10, 1092916. [Google Scholar] [CrossRef] [PubMed]
- Deeban, Y. Effectiveness of CAD-CAM Milled Versus DMLS Titanium Frameworks for Complete Dentures. Materials 2024, 17, 1123. [Google Scholar] [CrossRef]
- Sitalaksmi, R.M.; Ito, K.; Ogasawara, K.; Suto, Y.; Itabashi, M.; Ueda, K.; Hirasawa, N.; Arushima, T.; Hendrijantini, N.; Kresnoadi, U.; et al. COX-2 Induces T Cell Accumulation and IFN-γ Production during the Development of Chromium Allergy. Autoimmunity 2019, 52, 228–234. [Google Scholar] [CrossRef]
- Vaicelyte, A.; Janssen, C.; Le Borgne, M.; Grosgogeat, B. Cobalt–Chromium Dental Alloys: Metal Exposures, Toxicological Risks, CMR Classification, and EU Regulatory Framework. Crystals 2020, 10, 1151. [Google Scholar] [CrossRef]
- Mertová, K.; Palán, J.; Németh, G.; Fintová, S.; Duchek, M.; Studecký, T.; Veselý, J.; Máthis, K.; Džugan, J.; Trojanová, Z. Optimization of the Mechanical Performance of Titanium for Biomedical Applications by Advanced, High-Gain SPD Technology. Crystals 2020, 10, 422. [Google Scholar] [CrossRef]
- Sahin Hazir, D.; Sozen Yanik, I.; Guncu, M.B.; Canay, R.S. Biomechanical behavior of titanium, cobalt-chromium, zirconia, and PEEK frameworks in implant-supported prostheses: A dynamic finite element analysis. BMC Oral Health 2025, 25, 97. [Google Scholar] [CrossRef]
- Ahn, B. Microstructural Tailoring and Enhancement in Compressive Properties of Additive Manufactured Ti-6Al-4V Alloy through Heat Treatment. Materials 2021, 14, 5524. [Google Scholar] [CrossRef]
- Jamshidi, P.; Aristizabal, M.; Kong, W.; Villapun, V.; Cox, S.C.; Grover, L.M.; Attallah, M.M. Selective Laser Melting of Ti-6Al-4V: The Impact of Post-processing on the Tensile, Fatigue and Biological Properties for Medical Implant Applications. Materials 2020, 13, 2813. [Google Scholar] [CrossRef]
- Okazaki, Y.; Ishino, A. Microstructures and Mechanical Properties of Laser-Sintered Commercially Pure Ti and Ti-6Al-4V Alloy for Dental Applications. Materials 2020, 13, 609. [Google Scholar] [CrossRef]
- Bartolomeu, F.; Gasik, M.; Silva, F.S.; Miranda, G. Mechanical Properties of Ti6Al4V Fabricated by Laser Powder Bed Fusion: A Review Focused on the Processing and Microstructural Parameters Influence on the Final Properties. Metals 2022, 12, 986. [Google Scholar] [CrossRef]
- EN ISO 22674:2006; Dentistry—Metallic Materials for Fixed and Removable Restorations and Appliances. ISO: Geneva, Switzerland, 2006.
- Srimaneepong, V.; Yoneyama, T.; Kobayashi, E.; Doi, H.; Hanawa, T. Comparative Study on Torsional Strength, Ductility and Fracture Characteristics of Laser-Welded α+β Ti-6Al-7Nb Alloy, CP Titanium and Co-Cr Alloy Dental Castings. Dent. Mater. 2008, 24, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Homepage of Univie Sample Size Calculator. Available online: https://homepage.univie.ac.at/robin.ristl/samplesize.php?test=ttest (accessed on 18 July 2025).
- Dawood, A.; Marti Martí, B.; Sauret-Jackson, V.; Darwood, A. 3D Printing in Dentistry. Br. Dent. J. 2016, 220, 85–87. [Google Scholar] [CrossRef] [PubMed]
- Vasamsetty, P.; Pss, T.; Kukkala, D.; Singamshetty, M.; Gajula, S. 3D Printing in Dentistry—Exploring the New Horizons. J. Dent. Res. 2020, 26, 838–841. [Google Scholar] [CrossRef]
- HRN EN ISO 6892-1:2019; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. Croatian Standard; HZN: Zagreb, Croatia, 2019.
- Camacho Resotto, A.G.; Cordeiro, J.M.; Camacho Presotto, J.G.; Rangel, E.C.; da Cruz, N.C.; Landers, R.; Barão, V.A.; Mesquita, M.F. Feasibility of 3D-Printed Co–Cr Alloy for Dental Prostheses Applications. J. Alloys Compd. 2021, 862, 158171. [Google Scholar] [CrossRef]
- Slokar, L.; Matković, T.; Matković, P. Alloy Design and Property Evaluation of New Ti–Cr–Nb Alloys. Mater. Des. 2012, 33, 26–30. [Google Scholar] [CrossRef]
- Hao, Y.L.; Li, S.J.; Sun, B.B.; Sui, M.L.; Yang, R. Ductile Titanium Alloy with Low Poisson’s Ratio. Phys. Rev. Lett. 2007, 98, 216405. [Google Scholar] [CrossRef]
- Gong, N.; Montes, I.; Nune, K.; Misra, R.; Yamanaka, K.; Mori, M.; Chiba, A. Favorable Modulation of Osteoblast Cellular Activity on Zr-Modified Co-Cr-Mo Alloy: The Significant Impact of Zirconium on Cell–Substrate Interactions. J. Biomed. Mater. Res. B Appl. Biomater. 2020, 108, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Hui, S.-X.; Ye, W.-J.; Li, C.-L. Microstructure and mechanical properties of a new high-strength and high-toughness titanium alloy. Rare Met. 2023, 42, 281–287. [Google Scholar] [CrossRef]
- Rodrigues, R.; Faria, A.; Orsi, I.; De Mattos, M.; Macedo, A.; Ribeiro, R. Comparative Study of Two Commercially Pure Titanium Casting Methods. J. Appl. Oral. Sci. 2010, 18, 487–492. [Google Scholar] [CrossRef] [PubMed]
Material | Angle (°) | S0 (mm2) | SD | E (GPa) | SD |
---|---|---|---|---|---|
Cast Co-Cr | – | 11.42 | 0.284 | 232.4 | 41.01 |
Co-Cr | 0 | 11.24 | 0.146 | 238.0 | 8.883 |
Co-Cr | 45 | 11.50 | 0.092 | 250.9 | 3.372 |
Co-Cr | 90 | 11.40 | 0.120 | 238.3 | 3.470 |
Ti | 0 | 11.46 | 0.334 | 117.6 | 2.663 |
Ti | 45 | 11.40 | 0.104 | 121.1 | 2.542 |
Ti | 90 | 11.80 | 0.197 | 114.3 | 1.137 |
Material | Angle (°) | Rp0.2 (MPa) | SD | Rm (MPa) | SD |
---|---|---|---|---|---|
Cast Co-Cr | – | 617.7 | 19.23 | 7776 | 82.4 |
Co-Cr | 0 | 722.6 | 15.41 | 913.9 | 57.74 |
Co-Cr | 45 | 791.1 | 10.71 | 1072 | 29.77 |
Co-Cr | 90 | 694.5 | 15.77 | 920.3 | 34.76 |
Ti | 0 | 697.2 | 1.563 | 771 | 9.695 |
Ti | 45 | 1169 | 34.5 | 1228 | 26.23 |
Ti | 90 | 644 | 4.743 | 723 | 6.403 |
Material | Angle (°) | Ag (%) | SD | Agt (%) | SD | A (%) | SD | At (%) | SD | Fm (N) | SD |
---|---|---|---|---|---|---|---|---|---|---|---|
Cast Co-Cr | – | 5.269 | 4.296 | 5.612 | 4.359 | 5.668 | 4.217 | 5.982 | 4.301 | 8894 | 1099 |
Co-Cr | 0 | 1.183 | 0.69 | 1.568 | 0.719 | 1.262 | 0.761 | 1.636 | 0.781 | 10,285 | 910.5 |
Co-Cr | 45 | 1.635 | 0.246 | 1.062 | 0.263 | 1.666 | 0.272 | 2.091 | 0.287 | 12,331 | 278.3 |
Co-Cr | 90 | 1.38 | 0.356 | 1.766 | 0.362 | 1.462 | 0.452 | 1.844 | 0.454 | 10,491 | 348.3 |
Ti | 0 | 10.05 | 1.391 | 10.71 | 1.383 | 18.59 | 7.021 | 19.09 | 6.999 | 8840 | 362.7 |
Ti | 45 | 1.406 | 0.453 | 2.419 | 0.468 | 1.897 | 1.113 | 2.904 | 1.117 | 13,999 | 421.2 |
Ti | 90 | 9.473 | 0.441 | 10.1 | 0.441 | 25.84 | 1.33 | 26.31 | 1.335 | 8533 | 117.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šango, A.; Kodvanj, J.; Tariba Knežević, P.; Vučinić, D.; Besedić, P.; Katić, V. Mechanical Properties of 3D-Printed Titanium Alloy Titanflex® Compared to Conventional Materials for Removable Denture Bases: An Experimental Study. Materials 2025, 18, 4563. https://doi.org/10.3390/ma18194563
Šango A, Kodvanj J, Tariba Knežević P, Vučinić D, Besedić P, Katić V. Mechanical Properties of 3D-Printed Titanium Alloy Titanflex® Compared to Conventional Materials for Removable Denture Bases: An Experimental Study. Materials. 2025; 18(19):4563. https://doi.org/10.3390/ma18194563
Chicago/Turabian StyleŠango, Ana, Janoš Kodvanj, Petra Tariba Knežević, Davor Vučinić, Petra Besedić, and Višnja Katić. 2025. "Mechanical Properties of 3D-Printed Titanium Alloy Titanflex® Compared to Conventional Materials for Removable Denture Bases: An Experimental Study" Materials 18, no. 19: 4563. https://doi.org/10.3390/ma18194563
APA StyleŠango, A., Kodvanj, J., Tariba Knežević, P., Vučinić, D., Besedić, P., & Katić, V. (2025). Mechanical Properties of 3D-Printed Titanium Alloy Titanflex® Compared to Conventional Materials for Removable Denture Bases: An Experimental Study. Materials, 18(19), 4563. https://doi.org/10.3390/ma18194563