High-Vacuum Tribological Behaviors of Wear-Resistant WC/a-C:H Coatings with Strong Adhesion on Zirconia
Abstract
1. Introduction
2. Experimental Procedures
2.1. Coatings Preparation
2.2. Characterization Methods
2.3. High-Vacuum Tribology Experiment
3. Results and Discussions
3.1. Microstructure
3.2. Mechanical Properties
3.3. High-Vacuum Tribological Behaviors
3.4. High-Vacuum Wear Mechanisms
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garvie, R.C.; Hannink, R.H.; Pascoe, R.T. Ceramic steel? Nature 1975, 258, 703–704. [Google Scholar] [CrossRef]
- Matsui, K.; Hosoi, K.; Feng, B.; Yoshida, H.; Ikuhara, Y. Ultrahigh toughness zirconia ceramics. Proc. Natl. Acad. Sci. USA 2023, 120, e2304498120. [Google Scholar] [CrossRef] [PubMed]
- Ong, F.S.; Nambu, K.; Hosoi, K.; Kawamura, K.; Masuda, H.; Feng, B.; Matsui, K.; Ikuhara, Y.; Yoshida, H. Tetragonal phase stabilization and densification in AC flash-sintered 1.5 mol% yttria-stabilized zirconia polycrystals with high toughness. J. Eur. Ceram. Soc. 2024, 44, 1036–1043. [Google Scholar] [CrossRef]
- Yang, C.; Wei, W. Effects of material properties and testing parameters on wear properties of fine-grain zirconia (TZP ). Wear 2000, 242, 97–104. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, H.; Li, L.; Zhai, C.; Shao, S.; Song, S.; Zhang, G.; Xu, M. Improving wear resistance of yttria-stabilized tetragonal zirconia in air and high vacuum environments by multi-cycle annealing. Wear 2025, 566–567, 205903. [Google Scholar] [CrossRef]
- Zadorozhnaya, O.Y.; Khabas, T.A.; Tiunova, O.V.; Malykhin, S.E. Effect of grain size and amount of zirconia on the physical and mechanical properties and the wear resistance of zirconia-toughened alumina. Ceram. Int. 2020, 46, 9263–9270. [Google Scholar] [CrossRef]
- Li, Y.X.; Jing, P.P.; Guo, J.; Xiang, Y.; Liu, D.G.; Leng, Y.X. Mechanical properties and wear behaviors of Cu-doped zirconia-toughened alumina ceramics. Ceram. Int. 2023, 49, 14346–14354. [Google Scholar] [CrossRef]
- Rosentritt, M.; Preis, V.; Behr, M.; Strasser, T. Fatigue and wear behaviour of zirconia materials. J. Mech. Behav. Biomed. 2020, 110, 103970. [Google Scholar] [CrossRef]
- Basu, B.; Vitchev, R.G.; Vleugels, J.; Celis, J.P.; Van Der Biest, O. Influence of humidity on the fretting wear of self-mated tetragonal zirconia ceramics. Acta Mater. 2000, 48, 2461–2471. [Google Scholar] [CrossRef]
- Luo, P.; Zhang, J.; You, Z.; Ran, X.; Liu, Y.; Li, S.; Li, S. Effect of TiO2 content on the microstructure and mechanical and wear properties of yttria-stabilized zirconia ceramics prepared by pressureless sintering. Mater. Res. Express 2019, 6, 125211. [Google Scholar] [CrossRef]
- Chen, H.; Lee, S.; Zheng, X.; Ding, C. Evaluation of unlubricated wear properties of plasma-sprayed nanostructured and conventional zirconia coatings by SRV tester. Wear 2006, 260, 1053–1060. [Google Scholar] [CrossRef]
- Kern, F.; Palmero, P.; Marro, F.G.; Mestra, A. Processing of alumina–zirconia composites by surface modification route with enhanced hardness and wear resistance. Ceram. Int. 2015, 41, 889–898. [Google Scholar] [CrossRef]
- Robertson, J. Diamond-like amorphous carbon. Mat. Sci. Eng. R. 2002, 37, 129–281. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Xu, P.; Zhang, H.; Liu, L. Recent advances and challenges in tribology of diamond-like carbon films: A critical review. Diam. Relat. Mater. 2025, 154, 112206. [Google Scholar] [CrossRef]
- Igartua, A.; Berriozabal, E.; Nevshupa, R.; Roman, E.; Pagano, F.; Nielsen, L.P.; Louring, S.; Muntada, L. Screening of diamond-like carbon coatings in search of a prospective solid lubricant suitable for both atmosphere and high vacuum applications. Tribol. Int. 2017, 114, 192–200. [Google Scholar] [CrossRef]
- Tillmann, W.; Hoffmann, F.; Momeni, S.; Heller, R. Hydrogen quantification of magnetron sputtered hydrogenated amorphous carbon (a-C:H) coatings produced at various bias voltages and their tribological behavior under different humidity levels. Surf. Coat. Technol. 2011, 206, 1705–1710. [Google Scholar] [CrossRef]
- Erdemir, A.; Eryilmaz, O.L.; Fenske, G. Synthesis of diamondlike carbon films with superlow friction and wear properties. J. Vac. Sci. Technol. A 2000, 18, 1987–1992. [Google Scholar] [CrossRef]
- Lugo, D.C.; Silva, P.C.; Ramirez, M.A.; Pillaca, E.J.D.M.; Rodrigues, C.L.; Fukumasu, N.K.; Corat, E.J.; Tabacniks, M.H.; Trava-Airoldi, V.J. Characterization and tribologic study in high vacuum of hydrogenated DLC films deposited using pulsed DC PECVD system for space applications. Surf. Coat. Technol. 2017, 332, 135–141. [Google Scholar] [CrossRef]
- Chen, X.; Kato, T.; Nosaka, M. Origin of Superlubricity in a-C:H:Si Films: A Relation to Film Bonding Structure and Environmental Molecular Characteristic. ACS Appl. Mater. Inter. 2014, 6, 13389–13405. [Google Scholar] [CrossRef]
- Fontaine, J.; Donnet, C.; Gtill, A. Tribochemistry between hydrogen and diamond-like carbon films. Surf. Coat. Technol. 2001, 146, 281–286. [Google Scholar] [CrossRef]
- Erdemir, A.; Eryilmaz, O.L.; Nilufer, I.B.; Fenske, G.R. Effect of source gas chemistry on tribological performance of diamond-like carbon films. Diam. Relat. Mater. 2000, 9, 632–637. [Google Scholar] [CrossRef]
- Donnet, C.; Fontaine, J.; Le Mogne, T.; Belin, M.; Héau, C.; Terrat, J.P.; Vaux, F.; Pont, G. Diamond-like carbon-based functionally gradient coatings for space tribology. Surf. Coat. Technol. 1999, 120, 548–554. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, D.; He, Z.; Chen, L.; Xu, J.; Qian, L.; Wang, Y. Temperature dependence of atomic-oxygen irradiation mechanism of hydrogenated diamond-like carbon film. Diam. Relat. Mater. 2024, 144, 110997. [Google Scholar]
- Fontaine, J.; Le Mogne, T.; Loubet, J.L.; Belin, M. Achieving superlow friction with hydrogenated amorphous carbon: Some key requirements. Thin Solid Film. 2005, 482, 99–108. [Google Scholar] [CrossRef]
- Li, R.; Yang, X.; Ma, M.; Zhang, J. Hydrogen-Enhanced Catalytic Conversion of Amorphous Carbon to Graphene for Achieving Superlubricity. Small 2023, 19, e2206580. [Google Scholar] [CrossRef]
- Li, X.; Du, N.; Feng, C.; Chen, K.; Wei, X.; Zhang, D.; Lee, K. Theoretical superlubricity and its friction stability of amorphous carbon film induced by simple surface graphitization. Appl. Surf. Sci. 2023, 615, 156318. [Google Scholar] [CrossRef]
- Shi, J.; Ma, G.; Li, G.; Li, Z.; Zhao, H.; Han, C.; Wang, H. Evolution of high vacuum tribological performance of lead-doped hydrogenated diamond-like carbon coatings after atomic oxygen and ultraviolet irradiation. Tribol. Int. 2025, 202, 110356. [Google Scholar] [CrossRef]
- Cui, L.; Lu, Z.; Wang, L. Toward Low Friction in High Vacuum for Hydrogenated Diamondlike Carbon by Tailoring Sliding Interface. ACS Appl. Mater. Interfaces 2013, 5, 5889–5893. [Google Scholar] [CrossRef]
- Hideo, T.; Masahiro, Y.; Shigeyuki, S. Calibration Curve for Quantitative Analysis of the Monoclinic-Tetragonal ZrO2 System by X-Ray Diffraction. J. Am. Ceram. Soc. 1984, 67, C-119. [Google Scholar]
- Jin, X. Martensitic transformation in zirconia containing ceramics and its applications. Curr. Opin. Solid State Mater. Sci. 2005, 9, 313–318. [Google Scholar] [CrossRef]
- Wang, J.; Stevens, R. Zirconia-toughened alumina (ZTA) ceramics. J. Mater. Sci. 1989, 24, 3421–3440. [Google Scholar] [CrossRef]
- Wade-Zhu, Y.; Wade-Zhu, J.; Wu, H.; Binner, J.; Vaidhyanathan, B. The ballistic impact performance of nanocrystalline zirconia-toughened alumina (nZTA) and alumina ceramics. J. Eur. Ceram. Soc. 2021, 41, 1427–1437. [Google Scholar] [CrossRef]
- Rouhani, M.; Hobley, J.; Hong, F.C.-N.; Jeng, Y. In-situ thermal stability analysis of amorphous Si-doped carbon films. Carbon 2021, 184, 772–785. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
- Cui, W.G.; Lai, Q.B.; Zhang, L.; Wang, F.M. Quantitative measurements of sp3 content in DLC films with Raman spectroscopy. Surf. Coat. Technol. 2010, 205, 1995–1999. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, H.; Xu, M.; He, W.; Shao, S.; Song, S.; Zhang, G.A.; Lu, Z. Tribological behavior of a novel Si- and WC- co-reinforced a-C multilayer coating at 25–500 °C. Surf. Coat. Technol. 2023, 468, 129775. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, H.; He, W.; Ma, C.; Zhang, G.; Nie, X.; Li, Y. Tribological performance of a novel wide-temperature applicable a-C/(WC/a-C) film against M50 steel. Tribol. Int. 2020, 145, 106189. [Google Scholar] [CrossRef]
- Li, Z.; Xu, M.; Zhang, H.; He, W.; Zhang, G.; Lu, Z. Effect of silicon-doping on the wide-temperature tribological behavior and lubrication mechanism of WC/a-C film. Wear 2023, 516–517, 204614. [Google Scholar] [CrossRef]
- Chen, W.; Meng, X.; Wu, D.; Yao, D.; Zhang, D. The effect of vacuum annealing on microstructure, adhesion strength and electrochemical behaviors of multilayered AlCrTiSiN coatings. Appl. Surf. Sci. 2019, 467–468, 391–401. [Google Scholar] [CrossRef]
- Wang, S.; Li, Z.; Zhang, H.; Liang, X.; He, W.; Chen, Y.; Wu, Y.; Li, B. Study on the sand erosion resistance of ZrN and ZrAlSiN coatings. Surf. Coat. Technol. 2024, 488, 131081. [Google Scholar] [CrossRef]
- Usman, M.; Zhou, Z.; Zia, A.W.; Li, K.Y. Designing hydrogen-free diamond like multilayer carbon coatings for superior mechanical and tribological performance. Tribol. Int. 2024, 192, 109211. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Z.; He, W.; Liao, B.; He, G.; Cao, X.; Li, Y. Damage evolution and mechanism of TiN/Ti multilayer coatings in sand erosion condition. Surf. Coat. Technol. 2018, 353, 210–220. [Google Scholar] [CrossRef]
- Chen, X.; Du, Y.; Chung, Y. Commentary on using H/E and H3/E2 as proxies for fracture toughness of hard coatings. Thin Solid Films 2019, 688, 137265. [Google Scholar] [CrossRef]
- Ba, E.C.T.; Dumont, M.R.; Martins, P.S.; Da Silva Pinheiro, B.; Da Cruz, M.P.M.; Barbosa, J.W. Deconvolution process approach in Raman spectra of DLC coating to determine the sp3 hybridization content using the ID/IG ratio in relation to the quantification determined by X-ray photoelectron spectroscopy. Diam. Relat. Mater. 2022, 122, 108818. [Google Scholar] [CrossRef]
- Ba, E.C.T.; Martins, P.S.; Da Silva, M.B.; Santos, A.J.D.; Dumont, M.R.; Firpe, P.M.; de Melo Nogueira, G.F.S.; Júnior, P.A.A.M. Study of the structural and tribological characteristics of hydrogenated diamond-like carbon coatings for high-speed steel substrate applications. Tribol. Int. 2025, 212, 110941. [Google Scholar] [CrossRef]
- Barba, E.; Claver, A.; Montalà, F.; Palacio, J.F.; Luis-Pérez, C.J.; Sala, N.; Colominas, C.; García, J.A. Study of the Industrial Application of Diamond-Like Carbon Coatings Deposited on Advanced Tool Steels. Coatings 2024, 14, 159. [Google Scholar] [CrossRef]
Deposition Prosess | Cr Target Power/kW | WC Target Power/kW | C2H2 /sccm | Ar /sccm | Bias Voltage/V | Duration /s |
---|---|---|---|---|---|---|
Ar+ etching | 0 | 0 | 0 | 30 | −600 | 900 |
Cr | 3.5 | 0 | 0 | 150 | −70 | 900 |
Cr/WC | 3.5→0 | 4.0 | 0 | 150 | −50 | 1800 |
WC | 0 | 4.0 | 0 | 150 | −50 | 1800 |
WC/a-C:H | 0 | 4.0 | 0→50 | 150 | −50 | 4200 |
a-C:H | 0 | 0 | 280 | 0 | −700 | 12,600 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Li, L.; Zhang, H.; Shao, S.; Zhai, C.; Shang, L.; Zhang, G.; Xu, M. High-Vacuum Tribological Behaviors of Wear-Resistant WC/a-C:H Coatings with Strong Adhesion on Zirconia. Materials 2025, 18, 4560. https://doi.org/10.3390/ma18194560
Li Z, Li L, Zhang H, Shao S, Zhai C, Shang L, Zhang G, Xu M. High-Vacuum Tribological Behaviors of Wear-Resistant WC/a-C:H Coatings with Strong Adhesion on Zirconia. Materials. 2025; 18(19):4560. https://doi.org/10.3390/ma18194560
Chicago/Turabian StyleLi, Zeqing, Liang Li, Honghong Zhang, Shubao Shao, Chongpu Zhai, Lunlin Shang, Guang’an Zhang, and Minglong Xu. 2025. "High-Vacuum Tribological Behaviors of Wear-Resistant WC/a-C:H Coatings with Strong Adhesion on Zirconia" Materials 18, no. 19: 4560. https://doi.org/10.3390/ma18194560
APA StyleLi, Z., Li, L., Zhang, H., Shao, S., Zhai, C., Shang, L., Zhang, G., & Xu, M. (2025). High-Vacuum Tribological Behaviors of Wear-Resistant WC/a-C:H Coatings with Strong Adhesion on Zirconia. Materials, 18(19), 4560. https://doi.org/10.3390/ma18194560