Xanthan Gum as an Eco-Friendly Corrosion Inhibitor for N80 Carbon Steel Under High Pressure and High Temperature in Saline CO2-Saturated Solution
Abstract
1. Introduction
2. Experimental
2.1. Sample and Solution Preparation
2.2. Weight Loss Measurements
2.3. Electrochemical Measurements
2.4. Surface Analysis
3. Results and Discussion
3.1. Weight Loss Measurements
3.2. Adsorption Study and Activation Parameters
3.3. Electrochemical Measurements
3.4. Effect of Time
3.5. Surface Analysis
3.6. Mechanism of Inhibition
- (I)
- As seen in the FT-IR analysis, the peak intensity associated with inter/intramolecular H-bonded –OH (i.e., 3242 cm−1) decreases after adsorption of XG on the metal surface. The decrease in the intensity of this specific peak may result from various factors:
- In acidic environments, the numerous –OH groups in XG molecules can be readily protonated. According to the literature [9,14,30,36], the drop in intensity may be due to electrostatic interactions between some of the protonated –OH groups of XG and the metal surface, with chloride ions adsorbed on the positively charged metal acting as bridges between the two.
- The change can also be attributed to the formation of H-bonds between the XG’s hydroxyl groups and H+ absorbed on the cathodic sites of the steel surface through hydrogen bonding, as illustrated in Figure 15b. Consequently, H2 evolution is reduced (Equation (14)), as confirmed by the drop in cathodic current density in the presence of XG [6,8,13,34].
- The inhibitor may also interact with the FeCO3 layer formed on the metal surface. Shaikhah et al. [57] suggested, using density functional theory analysis, that the inhibitor could adsorb to the FeCO3 layer through hydrogen bonding. These bonds occur between the hydroxyl and carboxylic groups and the oxygen atoms on the FeCO3 layer (Figure 15b).
- (II)
- XG contained numerous electronegative heteroatoms (O) and oxygen functional groups (e.g., –OH, –COOH, –CH2–O–, and –CH2–O–CH2–), and unsaturated bonds (–C=O), with unshared electrons. The FT-IR spectra of the surface-adsorbed XG show some changes. The initial physisorption process allows XG to attach to the surface, facilitating the sharing of these free electrons with the d-orbitals of Fe atoms (supported by the red shift of the peaks associated with these groups) (Figure 15a,b).
4. Conclusions
- XG proved to be an effective corrosion inhibitor against sweet corrosion, and its anticorrosive performance was found to increase with concentration but decrease with temperature. The maximum inhibition efficiency was found to be 70.10% and 61.41% at 30 °C and 90 °C, respectively, after 24 h of immersion.
- Long immersion time experiments showed that the IE% initially increases during the first hours up to 24 h, then slightly decreases with longer immersion times.
- PDP measurements have shown that XG functions as a mixed-type inhibitor, suppressing both cathodic and anodic reactions at both temperatures; however, at 90 °C, the suppression of the cathodic reaction was more dominant.
- The FTIR measurements reveal that XG was strongly adsorbed on the metal surface and that the adsorption process followed the Temkin adsorption isotherm. The adsorption and activation parameters indicated that the adsorption process occurred through both physical and chemical mechanisms.
- SEM confirmed the efficacy of XG as a corrosion inhibitor. Cross-section SEM analysis reveals a thicker corrosion layer when XG is absent at both temperatures.
- The favourable IE observed at high temperatures may be attributed to the helix/coil transition process, which increases the number and mobility of XG macromolecules available for absorption on the surface, thereby partially compensating for the weakened interactions at the molecules/metal interface.
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nunes, L.J.R. The Rising Threat of Atmospheric CO2: A Review on the Causes, Impacts, and Mitigation Strategies. Environments 2023, 10, 66. [Google Scholar] [CrossRef]
- Hou, B.S.; Zhang, Q.H.; Li, Y.Y.; Zhu, G.Y.; Zhang, G.A. Influence of corrosion products on the inhibition effect of pyrimidine derivative for the corrosion of carbon steel under supercritical CO2 conditions. Corros. Sci. 2020, 166, 108442. [Google Scholar] [CrossRef]
- Obot, I.B.; Onyeachu, I.B.; Umoren, S.A. Alternative corrosion inhibitor formulation for carbon steel in CO2-saturated brine solution under high turbulent flow condition for use in oil and gas transportation pipelines. Corros. Sci. 2019, 159, 108140. [Google Scholar] [CrossRef]
- Hornafius, K.Y.; Hornafius, J.S. Carbon negative oil: A pathway for CO2 emission reduction goals. Int. J. Greenh. Gas Control. 2015, 37, 492–503. [Google Scholar] [CrossRef]
- Okafor, P.C.; Liu, C.B.; Zhu, Y.J.; Zheng, Y.G. Corrosion and Corrosion Inhibition Behavior of N80 and P110 Carbon Steels in CO2-Saturated Simulated Formation Water by Rosin Amide Imidazoline. Ind. Eng. Chem. Res. 2011, 50, 7273–7281. [Google Scholar] [CrossRef]
- Palumbo, G.; Górny, M.; Banaś, J. Corrosion Inhibition of Pipeline Carbon Steel (N80) in CO2-Saturated Chloride (0.5 M of KCl) Solution Using Gum Arabic as a Possible Environmentally Friendly Corrosion Inhibitor for Shale Gas Industry. J. Mater. Eng. Perform. 2019, 28, 6458–6470. [Google Scholar] [CrossRef]
- Zeng, D.; Dong, B.; Shi, S.; Pan, J.; Yu, H.; Li, J.; Ding, Y.; Cai, L. Effects of Temperature on Corrosion of N80 and 3Cr Steels in the Simulated CO2 Auxiliary Steam Drive Environment. Arab. J. Sci. Eng. 2018, 43, 3845–3854. [Google Scholar] [CrossRef]
- Palumbo, G.; Święch, D.; Górny, M. Guar Gum as an Eco-Friendly Corrosion Inhibitor for N80 Carbon Steel under Sweet Environment in Saline Solution: Electrochemical, Surface, and Spectroscopic Studies. Int. J. Mol. Sci. 2023, 24, 12269. [Google Scholar] [CrossRef] [PubMed]
- Solomon, M.M.; Onyeachu, I.B.; Njoku, D.I.; Nwanonenyi, S.C.; Oguzie, E.E. Adsorption and corrosion inhibition characteristics of 2–(chloromethyl)benzimidazole for C1018 carbon steel in a typical sweet corrosion environment: Effect of chloride ion concentration and temperature. Colloids Surf. A. 2021, 610, 125638. [Google Scholar] [CrossRef]
- Peng, S.Y.; Jiang, Z.N.; Li, Y.R.; Dong, C.F.; Liu, H.F.; Zhang, G.A. A new exceptional imidazoline derivative corrosion inhibitor for carbon steel in supercritical CO2 environment. Corros. Sci. 2025, 245, 112663. [Google Scholar] [CrossRef]
- Umoren, S.A. Inhibition of aluminium and mild steel corrosion in acidic medium using Gum Arabic. Cellulose 2008, 15, 751–761. [Google Scholar] [CrossRef]
- Solomon, M.M.; Gerengi, H.; Kaya, T.; Kaya, E.; Umoren, S.A. Synergistic inhibition of St37 steel corrosion in 15% H2SO4 solution by chitosan and iodide ion additives. Cellulose 2017, 24, 931–950. [Google Scholar] [CrossRef]
- Roy, P.; Karfa, P.; Adhikari, U.; Sukul, D. Corrosion inhibition of mild steel in acidic medium by polyacrylamide grafted Guar gum with various grafting percentage: Effect of intramolecular synergism. Corros. Sci. 2014, 88, 246–253. [Google Scholar] [CrossRef]
- Umoren, S.A.; AlAhmary, A.A.; Gasem, Z.M.; Solomon, M.M. Evaluation of chitosan and carboxymethyl cellulose as ecofriendly corrosion inhibitors for steel. Int. J. Biol. Macromol. 2018, 117, 1017–1028. [Google Scholar] [CrossRef]
- Palumbo, G.; Kollbek, K.; Wirecka, R.; Bernasik, A.; Górny, M. Effect of CO2 partial pressure on the corrosion inhibition of N80 carbon steel by gum arabic in a CO2-water saline environment for shale oil and gas industry. Materials 2020, 13, 4245. [Google Scholar] [CrossRef]
- Cao, Y.; Zou, C.; Wang, C.; Liang, H.; Lin, S.; Liao, Y.; Shi, L. β-cyclodextrin modified xanthan gum as an eco-friendly corrosion inhibitor for L80 steel in 1 M HCl. Cellulose 2021, 28, 11133–11152. [Google Scholar] [CrossRef]
- Cao, Y.; Zou, C.; Wang, C.; Chen, W.; Liang, H.; Lin, S. Green corrosion inhibitor of β-cyclodextrin modified xanthan gum for X80 steel in 1 M H2SO4 at different temperature. J. Mol. Liq. 2021, 341, 117391. [Google Scholar] [CrossRef]
- Mobin, M.; Rizvi, M. Inhibitory effect of xanthan gum and synergistic surfactant additives for mild steel corrosion in 1M HCl. Carbohydr. Polym. 2016, 136, 384–393. [Google Scholar] [CrossRef]
- Said, M.; Haq, B.; Al Shehri, D.; Rahman, M.M.; Muhammed, N.S.; Mahmoud, M. Modification of Xanthan Gum for a High-Temperature and High-Salinity Reservoir. Polymers 2021, 13, 4212. [Google Scholar] [CrossRef]
- Olabode, O.; Akinsanya, O.; Daramola, O.; Sowunmi, A.; Osakwe, C.; Benjamin, S.; Samuel, I. Effect of Salt Concentration on Oil Recovery during Polymer Flooding: Simulation Studies on Xanthan Gum and Gum Arabic. Polymers 2023, 15, 4013. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Qin, F.; Liu, T.; Zhang, X. Enhanced Oil Recovery Performance and Solution Properties of Hydrophobic Associative Xanthan Gum. Energy Fuels 2022, 36, 181–194. [Google Scholar] [CrossRef]
- Arukalam, I.O.; Alaohuru, C.O.; Ugbo, C.O.; Jideofor, K.N.; Ehirim, P.N.; Madufor, I.C. Effect of Xanthan gum on the Corrosion Protection of Aluminium in HCl medium. Int. J. Adv. Res. Technol. 2014, 3, 5–16. [Google Scholar]
- Pokhmurs’kyi, V.I.; Zin’, I.M.; Tymus, M.B.; Kornii, S.A.; Karpenko, O.V.; Khlopyk, O.P.; Korets’ka, N.I. Inhibition of the Corrosion of Carbon Steel by Xanthan Biopolymer. Mater. Sci. 2020, 55, 522–528. [Google Scholar] [CrossRef]
- Korniy, S.A.; Zin, I.M.; Tymus, M.B.; Khlopyk, O.P.; Danyliak, M.O.M. Corrosion Protection of Carbon Steel by a Composition Based on Natural Polysaccharide. Mater. Sci. 2021, 56, 602–607. [Google Scholar] [CrossRef]
- Fu, W.; Sun, L.; Zhang, X.; Xu, H.; Cao, M. Enhancing metal corrosion inhibition with xanthan gum: The synergistic role of anionic surfactants. Colloids Surf. A 2025, 711, 136364. [Google Scholar] [CrossRef]
- Biswas, A.; Pal, S.; Udayabhanu, G. Experimental and theoretical studies of xanthan gum and its graft co-polymer as corrosion inhibitor for mild steel in 15% HCl. Appl. Surf. Sci. 2015, 353, 173–183. [Google Scholar] [CrossRef]
- Chen, X.; Li, C.; Ming, N.; He, C. Effects of temperature on the corrosion behaviour of X70 steel in CO2-Containing formation water. J. Nat. Gas Sci. Eng. 2021, 88, 103815. [Google Scholar] [CrossRef]
- Petri, D.F.S. Xanthan gum: A versatile biopolymer for biomedical and technological applications. J. Appl. Polym. Sci. 2015, 132, 42035. [Google Scholar] [CrossRef]
- Jadav, M.; Pooja, D.; Adams, D.J.; Kulhari, H. Advances in Xanthan Gum-Based Systems for the Delivery of Therapeutic Agents. Pharmaceutics 2023, 15, 402. [Google Scholar] [CrossRef]
- Bergmann, D.; Furth, G.; Mayer, C. Binding of bivalent cations by xanthan in aqueous solution. Int. J. Biol. Macromol. 2008, 43, 245–251. [Google Scholar] [CrossRef]
- Souza, R.C.; Santos, B.A.F.; Gonçalves, M.C.; Mendes Júnior, E.P.; Simões, T.A.; Oliveira, J.R.; Vaz, G.L.; Caldeira, L.; Gomes, J.A.C.P.; Bueno, A.H. The role of temperature and H2S (thiosulfate) on the corrosion products of API X65 carbon steel exposed to sweet environment. J. Pet. Sci. Eng. 2019, 180, 78–88. [Google Scholar] [CrossRef]
- Honarvar Nazari, M.; Allahkaram, S.R.; Kermani, M.B. The effects of temperature and pH on the characteristics of corrosion product in CO2 corrosion of grade X70 steel. Mater. Des. 2010, 31, 3559–3563. [Google Scholar] [CrossRef]
- Forero, A.B.; Núñez, M.M.G.; Bott, I.S. Analysis of the Corrosion Scales Formed on API 5L X70 and X80 Steel Pipe in the Presence of CO2. Mater. Res. 2014, 17, 461–471. [Google Scholar] [CrossRef]
- Messali, M.; Lgaz, H.; Dassanayake, R.; Salghi, R.; Jodeh, S.; Abidi, N.; Hamed, O. Guar gum as efficient non-toxic inhibitor of carbon steel corrosion in phosphoric acid medium: Electrochemical, surface, DFT and MD simulations studies. J. Mol. Struct. 2017, 1145, 43–54. [Google Scholar] [CrossRef]
- Waheed, A.; Baig, N.; Ullah, N.; Falath, W. Removal of hazardous dyes, toxic metal ions and organic pollutants from wastewater by using porous hyper-cross-linked polymeric materials: A review of recent advances. J. Environ. Manag. 2021, 287, 112360. [Google Scholar] [CrossRef] [PubMed]
- Umoren, S.A.; Li, Y.; Wang, F.H. Electrochemical study of corrosion inhibition and adsorption behaviour for pure iron by polyacrylamide in H2SO4: Synergistic effect of iodide ions. Corros. Sci. 2010, 52, 1777–1786. [Google Scholar] [CrossRef]
- Amin, M.A.; Khaled, K.F.; Fadl-Allah, S.A. Testing validity of the Tafel extrapolation method for monitoring corrosion of cold rolled steel in HCl solutions—Experimental and theoretical studies. Corros. Sci. 2010, 52, 140–151. [Google Scholar] [CrossRef]
- Wu, W.; Yin, H.; Zhang, H.; Kang, J.; Li, Y.; Dan, Y. Electrochemical Investigation of Corrosion of X80 Steel under Elastic and Plastic Tensile Stress in CO2 Environment. Metals 2018, 8, 949. [Google Scholar] [CrossRef]
- Bockris, J.O.M.; Drazic, D.; Despic, A.R. The electrode kinetics of the deposition and dissolution of iron. Electrochim. Acta 1961, 4, 325–361. [Google Scholar] [CrossRef]
- Liu, D.; Fu, C.Y.; Chen, Z.Y.; Guo, X.P. CO2 Corrosion Mechanism of Carbon Steel in the Presence of Acetate and Acetic Acid. Corros. Sci. Technol. 2007, 6, 227–232. [Google Scholar]
- Islam, M.M.; Pojtanabuntoeng, T.; Gubner, R.; Kinsella, B. Electrochemical investigation into the dynamic mechanism of CO2 corrosion product film formation on the carbon steel under the water-condensation condition. Electrochim. Acta 2021, 390, 138880. [Google Scholar] [CrossRef]
- Gupta, K.K.; Haratian, S.; Gupta, S.; Mishin, O.V.; Ambat, R. The effect of cooling rate-induced microstructural changes on CO2 corrosion of low alloy steel. Corros. Sci. 2022, 209, 110769. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Hou, B.S.; Zhang, G.A. Inhibitive and adsorption behavior of thiadiazole derivatives on carbon steel corrosion in CO2-saturated oilfield produced water: Effect of substituent group on efficiency. J. Colloid Interface Sci. 2020, 572, 91–106. [Google Scholar] [CrossRef]
- Brug, G.J.; van den Eeden, A.L.G.; Sluyters-Rehbach, M.; Sluyters, J.H. The analysis of electrode impedances complicated by the presence of a constant phase element. J. Electroanal. Chem. Interfacial Electrochem. 1984, 176, 275–295. [Google Scholar] [CrossRef]
- Haruna, K.; Saleh, T.A. Graphene oxide with dopamine functionalization as corrosion inhibitor against sweet corrosion of X60 carbon steel under static and hydrodynamic flow systems. J. Electroanal. Chem. 2022, 920, 116589. [Google Scholar] [CrossRef]
- Belarbi, Z.; Dominguez Olivo, J.M.; Farelas, F.; Singer, M.; Young, D.; Nešić, S. Decanethiol as a Corrosion Inhibitor for Carbon Steels Exposed to Aqueous CO2. Corrosion 2019, 75, 1246–1254. [Google Scholar] [CrossRef]
- Karthik, G.; Sundaravadivelu, M. Studies on the inhibition of mild steel corrosion in hydrochloric acid solution by atenolol drug. Egypt. J. Pet. 2016, 25, 183–191. [Google Scholar] [CrossRef]
- Morad, M.S. An electrochemical study on the inhibiting action of some organic phosphonium compounds on the corrosion of mild steel in aerated acid solutions. Corros. Sci. 2000, 42, 1307–1326. [Google Scholar] [CrossRef]
- Mora-Mendoza, J.L.; Turgoose, S. Fe3C influence on the corrosion rate of mild steel in aqueous CO2 systems under turbulent flow conditions. Corros. Sci. 2002, 44, 1223–1246. [Google Scholar] [CrossRef]
- Dugstad, A. Fundamental Aspects of CO2 Metal Loss Corrosion Part I: Mechanism. In Proceedings of the CORROSION 2006, San Diego, CA, USA, 12–16 March 2006; pp. 1–18. [Google Scholar]
- Palencsár, A.; Gulbrandsen, E.; Kosorú, K. Corrosion Inhibition under FeCO3-forming Conditions at Elevated Temperatures. In Proceedings of the SPE International Oilfield Corrosion Conference and Exhibition, Aberdeen, Scotland, 12–13 May 2014. [Google Scholar]
- Shaikhah, D.; Barker, R.; Taleb, W.; Lazareva, A.; Mohamed-Said, M.; Cowe, B.; Neville, A. Engineering of corrosion product-polymer hybrid layers for enhanced CO2 corrosion protection of carbon steel part one: Corrosion study and mechanical property investigation. Polymer 2022, 242, 124614. [Google Scholar] [CrossRef]
- Lazareva, A.; Owen, J.; Vargas, S.; Barker, R.; Neville, A. Investigation of the evolution of an iron carbonate layer and its effect on localized corrosion of X65 carbon steel in CO2 corrosion environments. Corros. Sci. 2021, 192, 109849. [Google Scholar] [CrossRef]
- Hua, Y.; Xu, S.; Wang, Y.; Taleb, W.; Sun, J.; Zhang, L.; Barker, R.; Neville, A. The formation of FeCO3 and Fe3O4 on carbon steel and their protective capabilities against CO2 corrosion at elevated temperature and pressure. Corros. Sci. 2019, 157, 392–405. [Google Scholar] [CrossRef]
- Święch, D.; Piergies, N.; Palumbo, G.; Paluszkiewicz, C. In Situ and Ex Situ Raman Studies of Cysteine’s Behavior on a Titanium Surface in Buffer Solution. Coatings 2023, 13, 175. [Google Scholar] [CrossRef]
- Święch, D.; Kollbek, K.; Jabłoński, P.; Gajewska, M.; Palumbo, G.; Oćwieja, M.; Piergies, N. Exploring the nanoscale: AFM-IR visualization of cysteine adsorption on gold nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 318, 124433. [Google Scholar] [CrossRef]
- Shaikhah, D.; Ritacca, A.G.; Ritacco, I.; Matamorose-Veloza, A.; Taleb, W.; Mohamed-Said, M.; Cowe, B.; Neville, A.; Camellone, M.F.; Barker, R. Engineering of corrosion product-polymer hybrid layers for enhanced CO2 corrosion protection of carbon steel part two: Computational investigation and surface characterisation. Polymer 2022, 250, 124776. [Google Scholar] [CrossRef]
Temperature (°C) | R2 | a | Kads (g L−1) | (kJ mol−1) |
---|---|---|---|---|
Langmuir | ||||
30 | 0.989 | - | 3.60 | −20.64 |
90 | 0.986 | - | 3.17 | −21.66 |
Temkin | ||||
30 | 0.989 | −3.88 | 71.65 | −28.18 |
90 | 0.960 | −5.07 | 104.14 | −29.12 |
Cinh (g L−1) | Ea (kJ mol−1) | Qads (kJ mol−1) |
---|---|---|
Blank | 13.37 | - |
0.1 | 13.29 | −2.17 |
0.5 | 15.81 | −3.99 |
1.0 | 15.52 | −4.06 |
Cinh (g L−1) | βc (V dec−1) | icorr (mA cm−2) | Ecorr (V) | IE (%) |
---|---|---|---|---|
30 °C | ||||
Blank | 0.629 ± 0.051 | 0.607 ± 0.038 | −0.711 ± 0.19 | - |
0.1 | 0.438 ± 0.028 | 0.441 ± 0.029 | −0.712 ± 0.35 | 27.27 |
0.5 | 0.518 ± 0.035 | 0.224 ± 0.020 | −0.710 ± 0.20 | 63.08 |
1.0 | 0.518 ± 0.015 | 0.160 ± 0.025 | −0.727 ± 0.21 | 73.64 |
90 °C | ||||
Blank | 0.358 ± 0.011 | 1.505 ± 0.112 | −0.708 ± 0.041 | - |
0.1 | 0.342 ± 0.027 | 1.069 ± 0.085 | −0.734 ± 0.036 | 28.97 |
0.5 | 0.428 ± 0.018 | 0.819 ± 0.020 | −0.727 ± 0.018 | 45.55 |
1.0 | 0.368 ± 0.010 | 0.508 ± 0.057 | −0.724 ± 0.031 | 66.24 |
Cinh (g L−1) | Rs (Ω cm2) | CPEdl | Rct (Ω cm2) | Cdl (mF cm−2) | L (H cm2) | RL (Ω cm2) | Cf (mF cm−2) | Rf (Ω cm2) | Rp (Ω cm2) | χ2 (×10−3) | IE (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ydl (sn mΩ−1 cm−2) | ndl | |||||||||||
30 °C | ||||||||||||
Bank | 20.64 ± 1.51 | 5.09 ± 1.12 | 0.744 ± 0.22 | 24.19 ± 2.22 | 19.81 | - | - | 0.71 ± 0.25 | 8.63 ± 2.11 | 32.82 | 0.37 | - |
0.1 | 19.56 ± 2.01 | 3.73 ± 0.91 | 0.896 ± 0.20 | 39.64 ± 4.31 | 3.74 | - | - | 0.98 ± 0.31 | 11.72 ± 2.22 | 51.36 | 0.99 | 36.10 |
0.5 | 23.37 ± 1.99 | 0.88 ± 0.54 | 0.938 ± 0.22 | 50.06 ± 7.50 | 1.04 | - | - | 0.63 ± 0.11 | 17.43 ± 3.44 | 67.49 | 3.64 | 51.37 |
1.0 | 24.45 ± 1.71 | 0.92 ± 0.47 | 0.906 ± 0.15 | 89.38 ± 6.21 | 1.24 | - | - | 0.74 ± 0.09 | 20.38 ± 2.37 | 109.76 | 2.72 | 70.10 |
90 °C | ||||||||||||
Bank | 10.75 ± 1.11 | 9.25 ± 2.58 | 0.781 ± 0.19 | 9.62 ± 1.19 | 27.98 | - | - | 1.28 ± 0.18 | 5.43 ± 2.01 | 15.05 | 0.22 | - |
0.1 | 10.51 ± 1.53 | 5.01 ± 1.41 | 0.832 ± 0.21 | 12.29 ± 1.29 | 9.84 | - | - | 2.09 ± 0.20 | 6.51 ± 1.11 | 18.80 | 0.92 | 19.95 |
0.5 | 10.69 ± 1.54 | 3.16 ± 1.11 | 0.872 ± 0.19 | 22.68 ± 3.15 | 5.00 | 1.38 ± 0.11 | 2.52 ± 0.95 | 1.94 ± 0.09 | 4.29 ± 1.89 | 29.49 | 0.28 | 48.96 |
1.0 | 10.89 ± 1.23 | 1.46 ± 1.01 | 0.891 ± 0.11 | 31.69 ± 4.11 | 1.97 | 4.96 ± 1.25 | 7.31 ± 1.19 | - | - | 39.00 | 0.77 | 61.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palumbo, G. Xanthan Gum as an Eco-Friendly Corrosion Inhibitor for N80 Carbon Steel Under High Pressure and High Temperature in Saline CO2-Saturated Solution. Materials 2025, 18, 4450. https://doi.org/10.3390/ma18194450
Palumbo G. Xanthan Gum as an Eco-Friendly Corrosion Inhibitor for N80 Carbon Steel Under High Pressure and High Temperature in Saline CO2-Saturated Solution. Materials. 2025; 18(19):4450. https://doi.org/10.3390/ma18194450
Chicago/Turabian StylePalumbo, Gaetano. 2025. "Xanthan Gum as an Eco-Friendly Corrosion Inhibitor for N80 Carbon Steel Under High Pressure and High Temperature in Saline CO2-Saturated Solution" Materials 18, no. 19: 4450. https://doi.org/10.3390/ma18194450
APA StylePalumbo, G. (2025). Xanthan Gum as an Eco-Friendly Corrosion Inhibitor for N80 Carbon Steel Under High Pressure and High Temperature in Saline CO2-Saturated Solution. Materials, 18(19), 4450. https://doi.org/10.3390/ma18194450